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Local discriminative learning for pattern recognition
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Abstract

Local discriminative learning methods approximate a target function (a posteriori class probability function) directly
by partitioning the feature space into a set of local regions, and appropriately modeling a simple input}output
relationship (function) in each one. This paper presents a new method for judiciously partitioning the input feature space
in order to accurately represent the target function. The method accomplishes this by approximating not only the target
function itself but also its derivatives. As such, the method partitions the input feature space along those dimensions for
which the class probability function changes most rapidly, thus minimizing bias. The e$cacy of the method is validated
using a variety of simulated and real-world data. ( 2000 Pattern Recognition Society. Published by Elsevier Science
Ltd. All rights reserved.
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1. Introduction

In pattern classi"cation, a feature vector x3Rp, repres-
enting an object, is assumed to be in one of J classes
MiNJ

i/1
, and the objective is to build classi"ers that assign

x to the correct class. For a given cost matrix ¸
ij
, where

¸
ij

denotes the cost associated with assigning x to class
i when, in fact, x is in class j, the Bayes classi"er assigns
x to class i such that the expected cost

¸
i
"

J
+
j/1

¸
ij
Pr( jDx) (1)

is minimized. Here Pr( jDx) is the probability that x is in
class j given x. If all misclassi"cations induce an equal
cost, it can be shown that the Bayes classi"er reduces to

iH"arg max
1xixJ

Pr(iDx). (2)
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That is, the Bayes classi"er assigns x to the most prob-
able class. It is clear that in order to apply the Bayes
classi"er (Eq. (2)), the unknown class (conditional) prob-
abilities MPr(iDx)NJ

i/1
must be estimated.

Two general learning approaches exist for construct-
ing such pattern classi"ers [1]. The informative approach
models the class conditional densities and assign x to the
most likely class by examining the likelihood of each
class generating the features via the Bayes rule

Pr(iDx)"p(xDi)Pr (i)N
J
+
j/1

p(xD j)Pr( j), (3)

where p(xDi) is the conditional density for x given class i.
An example of this approach is the learning vector quant-
ization methods of Kohonen [2]. In practice, p(xDi)'s are
often assumed to take a known form, such as the Gaus-
sian. Then training data within each class can be used to
estimate the mean and covariance matrix, and class pro-
portions within the training data can be used to estimate
the priors Pr(i). These two estimates can be substituted
into Eq. (3) to obtain a posterior probability for each
class for the given input x.

The discriminative approach, on the other hand, as-
signs x to the most likely class by directly estimating the
class conditional probabilities MPr(iDx)NJ

i/1
based on re-

gression analysis, such as the least-squares estimate, from
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training data. This is possible because these quantities
are the only things that need be computed in order to
make correct classi"cation. Examples of this approach
include neural networks [3], nearest-neighbor methods
[4}7] and decision tree methods [8}15].

This paper is concerned with local discriminative
learning methods for building pattern classi"ers. These
methods "rst partition the input space into a set of local
regions. They then construct a simple pattern classi"er
within each region. For a given input, classi"cation is
made by "rst locating the region the input is in and then
classifying the input using the classi"er associated with
that region. The major appeals for such methods reside in
their ability to perform classi"cation by a sequence of
simple tests whose meanings are easy to understand and
their computational e$ciency.

One of the keys to constructing successful pattern
classi"ers using these methods is to determine how the
input feature space should be partitioned. The original
contributions of this paper are to provide a novel par-
titioning criterion that allows these methods to build
high performance classi"ers and to compare its perfor-
mance with that of other existing methods. In particular,
the partitioning criterion, when maximized, produces an
approximation to not only the class probability function
itself but also its derivatives, which often results in better
performance.

Note that this paper is focused on a class of local
learning methods that may be called univariate, because
only one input feature at each node is chosen for par-
titioning. However, there are methods [8,10,12,14,15]
that compute new features for partitioning that are a lin-
ear combination of the input features. These methods are
called multivariate. One would prefer such a method
when the underlying class is de"ned by a polygonal space
partitioning. While multivariate decision trees can per-
form signi"cantly better than univariate ones, this im-
provement is at the expense of increased computation. It
should be clear later that the technique presented here
can bene"t multivariate decision trees as well.

While local discriminative learning methods discussed
above show promise in classi"cation with high-dimen-
sional inputs, a new emerging class of appearance-based
methods [14,16,17] in computer vision have demon-
strated e!ectiveness in object recognition tasks involving
image data with high dimensionality. The key to the
success of appearance-based methods lies in their ability
to locate subspaces in which input data reside, thereby
mitigating the `curse-of-dimensionalitya [18]. We do
not discuss further issues concerning appearance-based
methods in the rest of the paper, except to state that
decision tree techniques can be employed in appearance-
based systems to achieve superior performance, as dem-
onstrated in [8,14,15].

The paper is organized as follows. We "rst describe
local discriminative learning for pattern classi"cation.

We then introduce a novel di!erential splitting criterion
for achieving e!ective local discriminative learning. After
that, we present several experimental studies evaluating
the e$cacy of our method and its use for pattern classi-
"cation using both simulated and real-world data. Fi-
nally, we conclude with the key aspects of this paper and
its contributions.

2. Local discriminative learning

One broad class of methods for estimating MPr(iDx)NJ
i/1

,
based on supervised learning, is to treat the class label
C3M1,2, JN at query x (test case) as a random variable
from a distribution with the probabilities MPr(iDx)NJ

i/1
.

Following Friedman's notation [11], C at x can be char-
acterized by introducing an additional variable, y, as

y
i
Dx"G

1, CDx"i,

0, CDxOi.
(4)

This gives rise to

f
i
(x) def" Pr(i Dx)"Pr(y

i
"1Dx)"E(y

i
Dx). (5)

Note that

0)f
i
(x))1

and

J
+
i/1

f
i
(x)"1.

The learning methods can then be applied to estimate
each f

i
(x) from the corresponding training data

Mx
k
, y

i
Nn
k/1

, (6)

where i"1,2,J. These estimates, fK
i
(x), can then be

plugged into Eq. (2) to obtain the optimal classi"cation
for input x. This learning paradigm has been a basis
for many techniques developed in neural networks,
machine learning, and memory-based regression for
pattern classi"cation. It is the target function f

i
(x),

hence Pr(iDx), that we seek to approximate here in order
to achieve optimal classi"cation performance. In what
follows, we drop the subscript i from f

i
(x) in Eq. (5) for

clarity.

2.1. Local learning

The principle of local learning is given by the Taylor
Theorem. According to this, any complex function can be
approximated by a simple function, such as a linear
function, in the vicinity of a given query. As such, some
of the di$culties often associated with global function
approximation methods, such as negative spatial
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Fig. 1. A recursive partitioning procedure.

crosstalk [4], can be avoided by local approximation,
thereby improving performance.

Given the above training data (Eq. (6)), local learning
methods [4,5,9,13,19}23] attempt to learn the target
function f (x), Eq. (5), by "rst partitioning the space Rp of
input variables into a set of local regions

MR
m
NM
m/1

where

R
m
LRp and

M
Z
m/1

R
m
"Rp.

One such procedure [9,13] is shown in Fig. 1. Here
function SplitDecision() computes the direction aH and
the split point spH by optimizing some split criterion
based on the training data in the region R under consid-
eration, and SplitFun(x,a) is a splitting function of x and
a, which is usually linear:

SplitFun(x,a)"a5x. (7)

The region R can thus be split by thresholding the split-
ting function along the direction aH at the split point spH.
The procedure terminates when a stopping criterion,
Stop(), is satis"ed. Note that in practice, split directions, a,
to be optimized are usually speci"ed. Furthermore, they
are often restricted to the coordinate axes for computa-
tional simplicity. That is,

a3Me
1
,2, e

p
N, (8)

where e
i
is a unit vector along the ith coordinate. Also,

the split point sp is usually taken to be the median or
mean value of Ma5x :x3RN. In this case, SplitDecision()
simply chooses one of the coordinate axes as the split
direction.

We can characterize the `locala notion of a region
R

m
more formally by its size according to

size(R
m
)" ave

x,x{|Rm

DDx!x@DD, (9)

where ave is an averaging function, and DD ) DD represents
a vector norm. That is, smaller values of size(R

m
) indicate

that R
m

is more `locala. As pointed out in Ref. [11],
regions can be su$ciently described by their locations
and sizes for p"1, i.e. x3R. For p*2, however, the
regions have `shapea (s) as well as location and size. One
way to de"ne the shape of a region is by its size along all
directions in the input feature space, that is, by the
function [11]

s
m
(a)"ave

x|Rm

Da5(x!u
m
)D, (10)

where a is a unit vector in Rp and u
m

is the center of R
m
.

Clearly, there are other ways to de"ne the shape of
a region. However, Eq. (10) appears to be a simple one
and is adequate to serve as a basis for deriving new
splitting criteria developed in Section 3. Region shapes
play an important role in developing successful local
learning methods for pattern classi"cation, as we shall
see later.

These methods learn a separate approximator fK
m
(x)

individually in each local region. These local approxi-
mators are usually low order polynomials (see Ref. [24]
for other possibilities). The accuracy of learning can be
measured by the typical quadratic error function

Err( f (x), fK ( x))"D f (x)!fK (x)D2. (11)

The goal, therefore, is to develop learning methods
such that the expectation of Eq. (11) is minimized in the
limit.

Local learning methods have shown promise in low-
dimensional settings [7,11,21,22]. However, these methods
tend to be less e!ective as dimensionality p increases.
This is a result of the so called `curse-of-dimensionalitya
[18], which in essence states that the expectation of
Eq. (11) can remain large in problems with high dimen-
sional feature spaces even for a reasonably large number
of training data.

Given the fact that the expectation of the error (11) can
be decomposed into

E[ f (x)!fK (x)]2

"E[ f (x)!EfK (x)#EfK (x)!fK (x)]2

" [ f (x)!EfK (x)]2#E[ fK (x)!EfK (x)]2, (12)

where the "rst term in Eq. (12) is the squared bias and the
second term is the variance. Thus, in order to minimize
Eq. (12) one must minimize the sum of squared bias and
variance. However, these are competing goals. Mini-
mizing squared bias demands small region size. On the
other hand, small regions tend to create large variance.
Techniques, such as recursive covering [11] and `softa
partitioning [25], exist that accommodate, to the extent
possible, these competing demands. The goal of this
paper is to introduce a novel technique that minimizes
squared bias by choosing region shape (Eq. (10)) more
judiciously. It represents an attempt to mitigate the
curse-of-dimensionality.
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3. Splitting criteria

In order to produce a good solution to the classi"ca-
tion problem based on local learning, a splitting strategy
is required. Such a strategy, when combined with recur-
sive partitioning, selects region shape (Eq. (10)) such that
fK
m
(x) approximates the target f (x) (Eq. (5)) well within

each region, thereby minimizing the overall error func-
tion (Eq. (11)). It is a step where care must be taken in
order to achieve optimal pattern classi"cation in a high-
dimensional feature space.

3.1. Residual splitting

It is argued in Ref. [11] that the optimal shape for
a region R

m
should be governed by the properties of the

target function f (x) within it. Speci"cally, its shape in any
direction a, Eq. (10), should be inversely proportional to
the rate of change of the absolute bias in that direction

s
m
(a)&1Nave

x|Rm
Aa5

L
Lx

D f (x)!fK
m
(x)DB. (13)

It is clear that the shape depends on the target
function f (x), the local approximator fK

m
(x) used, and

the location x of the region in the input feature
space. Such dependence on the query location is con-
sidered highly desirable because the resulting shape
for a region is adapted to each individual query, instead
of using the same shape for all regions. The partition
strategy suggested by Eq. (13) states that the input
feature space should be split along directions where the
target f (x) changes most rapidly. That is, the input
feature space should be constricted along directions of
large variations of f (x), and enlongated in directions of
small variations.

Based on Eq. (13) the splitting criterion for recursive
partitioning proposed in Ref. [11] is the following. Let

Mr
i
"y

i
!fK

R
(x

i
) Dx

i
3RN (14)

be the residuals resulting from the approximator fK
R
(x) "t

to the data in R. Then the criterion (called residual
criterion here) to be maximized for choosing the split
direction a is

ResidualCri(a)"Kave
x
i|R

Mr
i
Dx

i
)s(a)NK

# Kave
x
i|R

Mr
i
Dx

i
's(a)NK, (15)

where s(a) is the split point (the median of Ma5x
i
D x

i
3RN).

Maximizing Eq. (15) produces the direction in which the
points to be removed (as part of another partition) devi-
ate most from the local approximation in the region
being split. That is, the split direction given by Eq. (15) is
the direction along which the local approximator fK

R
(x)

is the worst in approximating the target function in R.

Therefore, splitting along it can be expected to give rise to
better approximation to the target function in the result-
ing partitions. Note that the split criterion, Eq. (15), is
motivated by Eq. (13) and represents a computationally
feasible approximation to the simple strategy implied
by Eq. (13). It has been demonstrated that the residual
splitting criterion achieved impressive performance in
a variety of target functions [11].

3.2. Limitation of residual splitting

Let us consider the following quadratic target func-
tion de"ned over the two-dimensional input space
x3[!4, 4]2

f (x)"!x2
1
. (16)

The target function f (x) is clearly (radial) asymmetric in
the input features as shown in Fig. 2. That is, for an
arbitrary rotation matrix R (i.e., the column vectors of
R are orthogonal.),

f (x)Of (Rx).

Furthermore, the target function f (x) changes rapidly
along the X

1
-axis while remaining constant along X

2
for

a given x
1
. Suppose one uses a local constant approxi-

mator (zero-degree polynomial or mean value) in each
region. Then it can be shown that the optimal recursive
split should be carried out along X

1
only. Assume we are

given the following training data:

x
1
"(!3,!2)5 y

1
"!9

x
2
"(!1,!2)5 y

2
"!1

x
3
"(1,!2)5 y

3
"!1

x
4
"(3,!2)5 y

4
"!9,

x
5
"(!3,#2)5 y

5
"!9

x
6
"(!1,#2)5 y

6
"!1

x
7
"(1,#2)5 y

7
"!1

x
8
"(3,#2)5 y

8
"!9.

Assume further, without loss of generality, that the direc-
tions to be optimized are taken to be the original coordi-
nate axes and that the split points are taken to be mean
values along each axis. Note that the assumptions we are
making here do not in any way introduce bias either
against or in favor of the residual splitting criterion,
Eq. (15). They simply serve to simplify the computational
process. When the split criterion is applied to the above
data, it fails to yield the optimal direction (X

1
in this

case) along which the input space should be split. In fact,
with fK

R
(x)"!5 for all x, we have

Mr
1
"!4, r

2
"4, r

3
"4, r

4
"!4, r

5
"!4,

r
6
"4, r

7
"4, r

8
"!4N.
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Fig. 2. A quadratic function.

It follows that

ResidualCri(e1)"ResidualCri(e2)"0.

where ei is a unit vector along the ith input coordinate.
That is, Eq. (15) cannot distinguish high di!erential rel-
evance between the two input variables.

While the target function presented here is an espe-
cially simple one, the local constant approximator is
quite general. The above example is meant to illustrate
the problems involved. It demonstrates that the residual
splitting criterion is quite limited in producing the de-
sired goal in a simple setting. Furthermore, while com-
putationally simple, it is far from approximating the split
strategy suggested by Eq. (13). Better criteria that are
sensitive to input di!erential relevance in input variables
must be sought.

3.3. Diwerential splitting

The optimal partition for any region should be driven
by the properties of the target function f (x) within it,
particularly the derivatives ("rst order), as indicated by
the split strategy suggested by Eq. (13). In this sense, the
residual splitting criterion presented in the earlier section
represents only a zero-order approximation to that strat-
egy in that it "nds a direction along which the points to
be removed (to create a new partition) minimize the
residuals from the local "t to the data within the region
being split. However, it is possible that even though
the input variables have high di!erential relevance, the
average residual remains the same along the directions
under consideration, as evidenced by the target function
Eq. (16) in the above example.

The new splitting criterion we propose here represents
a computationally feasible approximation to the split
strategy suggested by Eq. (13) and is a generalization of
residual splitting (Eq. (15)). It attempts to capture di!er-
ential relevance in the input variables by estimating the

("rst order) derivatives of target functions. As will be
shown later the new criterion is e!ective in those situ-
ations where di!erential relevance exists.

From the Taylor series expansion, for a su$ciently
small d

f (x#de
i
)Kf (x)#de5

i
g(x)#1

2
d2e5

i
G(x)e

i

"f (x)#d[g]
i
(x)#1

2
d2[G]

ii
(x), (17)

where e
i

is the unit vector along the ith coordinate
direction, [g]

i
is the ith element of g and [G]

ii
is the iith

element of G * the Hessian matrix of size p]p. Thus,
[g]

i
can be approximated by [g( ]

i

[g( ]
i
(x)"

f (x#de
i
)!f (x)

d
!

1

2
d[G]

ii
(x). (18)

When the second term involving [G]
ii

is ignored, which
is the second-order term in d in the Taylor series, we have
the forward diwerence approximation that is exact for
linear functions. The alternative, central diwerence ap-
proximation, neglects only third-order terms in d and is,
therefore, exact for quadratic functions [26]. However,
the increase in accuracy is at the expense of increased
computation.

From Eq. (18), the "nite di!erence approximation to
the "rst-order derivatives of the target function f (x),
along input dimension i at x in the region R being split,
can be given by

[g( ]
i
(x)"

y!y@
[x]

i
![x@]

i

, (19)

where x,x@3R, [x]
i
O[x@]

i
, 0( D [x]

i
![x@]

i
D)d and

DDx!x@DD
=
)h. Here d and h are the procedural (`metaa)

parameters. The conditions

0(D[x]
i
![x@]

i
D)d and DDx!x@DD

=
)h (20)

state that two points x and x@ must be close for the
approximation to be valid. It turns out that Eq. (19) does
not critically depend on h, as we shall see later. Note that
it is possible for [g( ]

i
(x) to have multiple values, in which

case the maximum absolute value is taken. It is also
possible that such an approximation, [g( ]

i
(x), may not

exist. Now let

Md(x)"g( (x)!LfK
R
/Lx D x3RN (21)

be the di!erential residuals resulting from the local ap-
proximator fK

R
"t to the data in R. If [g( ]

i
(x) does not exist,

d
i
(x)"0. Also let the derivative criterion

DeriCri(a)"ave
x|R

MDa5d(x)D Dx)s(a)N

#ave
x|R

MDa5d(x)D Dx's(a)N, (22)

where s(a) is the split point (usually the median or mean
value of Ma5d(x) Dx3RN). Maximizing Eq. (22) produces
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the direction along which the "rst-order derivatives of
the local approximation deviate the most on average
from those of the target function in the region being split.
From Eqs. (22) and (15), the di!erential splitting criterion
(to be maximized) for selecting the split direction a can
then be given by

SplitCri(a)"jResidualCri(a)#(1!j)DeriCri(a), (23)

where j3[0, 1].
If the input variables are equally relevant, then how

well the local approximator "ts to the data should deter-
mine the split direction. In this case, one prefers j"1.
On the other hand, if the input variables are unequal in
their di!erential relevance, then the direction selected for
split should re#ect the extent to which such relevance can
be captured by the local approximation along it. This
corresponds to 0)j(1, and is related to the notion of
di!erential scaling of input variables [27]. At the extreme
where j"0, partition is determined solely by Eq. (22). In
theory, Eq. (22) by itself can produce the desired goal.
In practice, however, insu$cient data might impede the
direct application of Eq. (22). Our experiments show that
di!erential splitting (Eq. (23)) with j3(0,1) achieves the
best of both residual splitting (Eq. (15)) and derivative
splitting (Eq. (22)) worlds.

In order to gain an intuitive perspective on the di!er-
ential splitting criterion, we apply it to the example
described in Section 3.2 with the following parameter
settings: j"0.9, d"4, h"0.1. Once again the split
points are taken to be the mean and a local constant
approximator is used. From Eq. (21), we have

d(x
1
)"(4, 0)5, d(x

2
)"(4, 0)5, d(x

3
)"(4, 0)5,

d(x
4
)"(4, 0)5,

d(x
5
)"(4, 0)5, d(x

6
)"(4, 0)5, d(x

7
)"(4, 0)5,

d(x
8
)"(4, 0)5.

It follows that DeriCri(e1)"8 and DeriCri(e2)"0. We
also have ResidualCri(e1)"ResidualCri(e2)"0. There-
fore, SplitCri(e1)"0.8 and SplitCri(e2)"0. Thus, X

1
is

the direction selected for splitting according to the di!er-
ential splitting criterion (Eq. (23)), which is indeed the
optimal direction.

4. Empirical results on simulated data

In this section we present results of applying the two
splitting criteria, Eqs. (15) and (23), to arti"cial data that
simulate a variety of target functions (Eq. (5)). Two ap-
proximation schemes were employed in these experi-
ments. One is local constant approximation where the
target function in each local region, R, is approximated
by

fK
R
(x)"c, (24)

where x3R and c"avex|R
(x). Here ave is an averaging

function such as the mean function. The other is local
linear approximation where the target function is ap-
proximated by

fK
R
(x)"a5x, (25)

where x"(1,x
1
,2,x

p
)53R and a"(a

0
, a

1
,2, a

p
)5 is

determined from the training observations in region R.
In all the experiments reported in this section, j (Eq.

(23)) was set to 0.9. In addition, the values of d (Eq. (20))
used to produce the results for each target were selected
as the best from among several runs, while h (Eq. (20))
was set to 0.5 throughout. No attempt was made to
search for the best values exhaustively.

4.1. Performance measure

For each target function f (x) and each method k, the
mean absolute target error

e
k
"meanD f (x)!fK

k
(x)D (26)

was computed over 5000 independently generated test
observations. The performance measure used for com-
parison is

r
k
"e

k
/min

t
e
t
. (27)

This quantity is exactly the same as the one used in Ref.
[11]. That is, we normalize the target error for each
method by that of the best method. Therefore, the best
method receives a value of 1, while all others have larger
values for each target function. The distribution of
r
k

values provides relative performance for each method.
Thus, for a method that performs the best for all target
functions this distribution should be a point mass at the
value 1.

4.2. Quadratic function

The target function examined in this section is the
same quadratic function (Eq. (16)) as in Section 3.2.
The two input variables are randomly generated from a
uniform distribution: x&;2[!4,4], and the corre-
sponding output y is computed according to Eq. (16).
Fifty sets of training data having 500 samples each were
independently generated. The training observations in
each terminal region of the "nal partition were set to
5 (stopping criterion).

Fig. 3 shows the distributions of relative errors for the
two methods on an independent test set of 5000 observa-
tions. Fig. 3(a) shows the results using a local constant
approximator (Eq. (24)), while Fig. 3(b) the results using
a local linear approximator (Eq. (25)). It can be seen that
high di!erential relevance is exploited by the di!erential
splitting criterion.
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Fig. 3. Distribution of relative errors for the quadratic target function: (a) local constant approximator; (b) local linear approximator.

Fig. 4. A set of 500 randomly generated training data.

Fig. 5. Input feature space partition: (a) partitions produced by residual splitting (15); (b) partitions produced by new di!erential
splitting (23).

4.2.1. Input feature space partition
Fig. 4 shows one set of 500 randomly generated train-

ing data according to the quadratic function Eq. (16).
Fig. 5(a) shows the partition of the input space resulting
from applying Eq. (15) (residual splitting) as the split
criterion, from which a mean absolute target error of 2.01
(Eq. (26)) was obtained. The total number of disjoint
regions is 109. In contrast, Fig. 5(b) shows the partition as
a result of applying Eq. (23) (di!erential splitting) as the
split criterion. This partition gave rise to a mean absolute
target error of 0.09 over 5000 independently randomly
generated test data. The number of disjoint regions is
113. A local constant approximator (Eq. (24)) is used in
this experiment. The results demonstrate clearly the ad-
vantage of the new splitting criterion in that it splits the
input space along the direction where the target function
changes most rapidly.
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Fig. 6. Distributions of relative errors for the target functions: (a), (c) K"5; (b), (d) K"10; (a), (b) Local constant approximator; (c),(d)
Local linear approximator.

4.3. Randomly generated functions

The target function (Eq. (16)) was purposefully chosen
to show the ability of the new splitting criterion to
di!erentiate input relevance in some cases. To further
illustrate the relative merits of the new splitting criterion,
it is applied to a variety of randomly generated target
functions (taken from Ref. [11]). Each one has the form

f (x)"
K
+
k/1

a
k
h(x, z

k
,V

k
), (28)

where

h(x, z,V)"
1

DVD
expC!

1

2
(x!z)5V~1(x!z)D. (29)

That is, f (x) is a linear combination of Gaussian func-
tions, where

Ma
k
&;[!1, 1]NK

k/1

and

Mz
k
&;n[0, 1]NK

k/1
.

In addition, the eigenvectors of each V
k

are generated
uniformly randomly on the unit p-sphere subject to the
orthogonality constraint, and the eigenvalues are gener-

ated uniformly from;[0.525Jp, 0.025Jp]. This allowed
us to generate a wide variety of target functions in terms
of the geometric shapes of their contours.

The experiments described here consist of 100 such
randomly generated functions with p"10 input vari-
ables. The study of the 100 target functions is divided into
two groups of 50 targets each, the "rst group with K"5,
and the second with K"10. The input points for each
target were generated randomly from a uniform distribu-
tion

x&;10[0, 1].

The training observations in each terminal region of the
"nal partition were set to 5 for local constant "tting,

while the training observations were set to 20 for local
linear "tting. Note that linear "tting requires su$cient
training observations to constraint the unknown vari-
ables and 20 data points in each partition seem to be
adequate for local "tting in these experiments. The
quantity for comparison is provided by Eq. (27) over
5000 independently generated test observations.

Fig. 6 shows the distributions of relative performance
of the two splitting criteria for the target functions. In
both cases, each target was learned using a training set of
n"1500 observations. The results show convincingly
that the new criterion (Eq. (23)) outperformed residual
splitting (Eq. (15)) on all the target functions. It can also
be seen that local constant "tting seems to give better
performance than local linear "tting, which is consistent
with the results reported in Ref. [11].

4.3.1. Ewect of sample size
The new criterion (Eq. (23)) requires estimates of the

derivatives of target functions. However, in a high-di-
mensional space there may not be su$cient training data
to permit such (accurate) estimates. In order to gain
a perspective on this issue, the criterion is applied to the
same target functions, but at a reduced sample size. Fig. 7
shows the distributions of relative errors at a sample size
1000 and 500, using a local constant approximator (Eq.
(24)). The results show that the improvement of di!eren-
tial splitting (Eq. (23)) over residual splitting (Eq. (15))
becomes less dramatic as the size of training sets de-
creases.

4.3.2. Ewect of j on performance
Finally, additional experiments were carried out to

examine the e!ect of j on the performance of di!erential
splitting. Ten target functions were randomly generated
from Eq. (28) with K"10. Each target was learned using
a training set of 1000 points. The results were averaged
over 5000 independently generated test observations.
A local constant approximator was used in these experi-
ments. Fig. 8 shows the performance of Eq. (23) as a
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Fig. 7. Distribution of relative errors for the target functions (K"5): (a) training sample size n"1000; (b) training sample size n"500.

Fig. 8. Performance of SplitCri (Eq. (23)) as a function of j.

Fig. 9. Performance of SplitCri (Eq. (23)) as a function of j.

function of j. Again, the values of d (Eq. (20)) that pro-
duced the results were chosen as the best from among
several runs, while h (Eq. (20)) was set to 0.5.

The overall performance of di!erential splitting as a
function of j shows that the new criterion produces
relatively large approximation errors when j takes
on values 0 or 1, thereby indicating neither residual
splitting (Eq. (15)) nor derivative splitting (Eq. (22))
alone achieved good performance over target functions
under study. The best of both worlds is achieved at
the values of j between 0 and 1, as was expected.
In addition, the results show that good performance can
be obtained over a wide range of j values. Similarly,
Fig. 9 shows the performance of the di!erential splitt-
ing criterion on the quadratic function (Eq. (16))
as a function of j. It can be seen that similar performance
characteristics to that of (Eq. (23)) on the random target
functions were obtained. Although these experiments of
10 random and one quadratic target functions are by no
means extensive, we expect the result (best performance
when j3(0, 1)) to hold in general. This is because the
di!erential splitting criterion exploits both types of in-
formation, namely, residual (Eq. (15)) and derivative (Eq.
(22)).

5. Empirical results on real data

In order to further evaluate our local learning method
for pattern classi"cation, we applied it to the letter image
recognition data (LIRD) from the UCI repository of
machine learning databases [28]. LIRD consists of a
large number of black-and-white rectangular pixel arrays
as one of the 26 upper-case letters in the English alpha-
bet. The characters are based on 20 Roman alphabet
fonts, such as HASTR, HCART, and HCITA, etc. They
represent "ve di!erent stroke styles, such as simplex and
triplex, and six di!erent letter styles, such as script and
German. Each letter is randomly distorted through
a quadratic transformation to produce a set of 20,000
unique letter images that are then converted into 16
primitive numerical features. Basically, these numerical
features are statistical moments and edge counts. The last
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Table 1
Feature information

Feature Description

1 x-bar mean x of on pixels in box
2 y-bar mean y of on pixels in box
3 x2bar mean x variance
4 y2bar mean y variance
5 xybar mean xy correlation
6 x2ybr mean of x *x * y
7 xy2br mean of x * y * y
8 x-ege mean edge count left to right
9 xegvy correlation of x-edge with y

10 y-ege mean edge count bottom to top
11 yegvx correlation of y-edge with x

2Our experiment shows that the "rst 5 features, such as box
positions and the size of box, do not signi"cantly contribute to
overall recognition performance.

Fig. 10. Sample character images.

Fig. 11. Child regions generated by recursive partitioning vs.
recursive covering.

Fig. 12. A local learing algorithm for approximating the class
probability function.

11 of the 16 features2 are used here and scaled to "t into
a range of real values from 0 to 1. A brief description of
these features [28] is listed in Table 1. Subsets of LIRD
(sample character images are shown in Fig. 10) are used
to produce the results reported here.

Instead of recursive partitioning, we used recursive
covering [11] as the regression model in these experi-
ments. Similar to recursive partitioning, recursive cover-
ing partitions the input space into a set of local regions
within which a simple input-output relationship is
modeled. Unlike recursive partitioning, however, the
local regions produced by recursive covering are not
disjoint. They overlap each other instead. Fig. 11 illus-
trates child regions produced by recursive partitioning
vs. recursive covering. The split points, s

1
and s

2
, in

recursive covering are taken such that there are (1!c)%
of data in each child region, where 0)c)1/2 is a pro-
cedural `trimming factora. Because more data are passed
on to child regions in recursive covering regression, these
methods tend to produce better approximation than that
produced by recursive partitioning methods, especially
when c is close to zero. However, increased accuracy is at
the expense of increased computation. Note that when
c"1/2, recursive covering reduces to recursive partition-
ing.

Similar to recursive partitioning, the recursive cover-
ing method employs local constant approximators in
these experiments. Fig. 12 summarizes our local learning
algorithm for approximating f

i
(x) that takes as input

a set of training data and produces as output an approxi-
mation to f

i
(x): fK

i
(x), i"1,2, J. For a given input query

x, the decision is to assign x to class i such that

i"arg max
1xixJ

M fK
i
(x)N.

Note that the training observations in each terminal
region of the "nal partition are set to 8. For all the
experiments reported here, the trimming factor c was set
to 0.35, j (Eq. (23)) was set to 0.9 and h (Eq. (20)) to 0.3,
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Table 2
Average classi"cation accuracy for LIRD problems

ProblemCmethod RSRC DSRC C4.5

k p k p k p

CG1 95.1 0.31 96.4 0.24 95.2 0.18
CG2 93.4 0.23 94.2 0.18 93.2 0.32
UV 98.3 0.24 99.1 0.14 98.3 0.14
IJLT 92.2 1.50 94.6 0.17 93.8 0.17

while d (Eq. (20)) was determined experimentally during
several trial runs. For comparison, C4.5 [13] was also
implemented as a competing method.

5.1. The problems

Problem 1. This is a two class classi"cation problem
involving letters C and G. There are total 1509 instances,
736 for C and 773 for G. 1000 instances from among the
1509 instances are uniformly randomly selected (without
replacement) as training data, and remaining instances
are used as testing data upon which classi"cation perfor-
mance is evaluated. We denote this problem as CG1.

Problem 2. This problem is the same as the "rst one.
However, only 500 instances are uniformly randomly
selected as training data, and remaining 1009 instances as
testing data. We call this experiment CG2.

Problem 3. This problem involves letters U and V.
There are total 1577 instances, 813 for U and 764 for V.
Similar to the "rst problem, 1000 instances are uniformly
randomly chosen as training data, and remaining instan-
ces are used as testing data. We call this experiment UV.

Problem 4. The "nal problem involves letters I, J, L,
and T. There are 3059 instances, 1500 of which are
uniformly randomly selected as training data, and the
rest as testing data. This problem is denoted by IJLT.

5.2. Results

For each problem, 10 training sets (and corresponding
testing sets), each with a di!erent random seed, were
independently generated. The average classi"cation
performance of each method on the 10 independent ex-
periments is then reported in Table 2, where k represents
the mean and p the standard deviation. Note that in
Table 2 RSRC denotes the recursive covering method
coupled with the residual splitting criterion (Eq. (15)),
whereas DSRC represents the recursive covering method
employing the di!erential splitting criterion (Eq. (23)).

The results show that DSRC registered performance
that is consistently better than both RSRC and C4.5
across the tasks. While the margins of improvement are

not as dramatic as in the simulated data experiments,
they are signi"cant (e.g., the mean di!erences are at least
more than two standard deviations apart, except that
between RSRC and DSRC on the IJLT problem). One
possible explanation is that the letter image recognition
problems (with the features that are used here) do not
exhibit signi"cant di!erence in di!erential relevance
along directions under consideration.

6. Conclusions

The local discriminative learning method developed in
this paper for pattern classi"cation establishes its validity
by producing the desired goal in situations where high
di!erential relevance exists in input variables. It achieves
superior performance in a wide variety of target functions
and classi"cation tasks by capturing such di!erential
relevance. A potential limitation of the method presented
here is that it requires su$cient data in order to reliably
estimate di!erential relevance of features input to the
local learning procedure. This is particularly true when
di!erential relevance of input features to the underlying
task is fairly equal. However, when such relevance is
unequal, the method works very e!ectively, as evidenced
by the quadratic target function task (Eq. (16)).

It is important to note that, while directions under
consideration for splitting in the experiments reported
here are those along coordinate axes, other directions, as
a function of observations, can be considered as well
using the same technique. This will no doubt enhance the
discriminating power of resulting classi"ers, albeit it is at
the expense of increased computation. We believe that
the region selection technique presented in this paper
lays a solid foundation upon which to construct e$cient
local discriminative learning methods for pattern classi-
"cation in high dimensional settings.
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