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Most of the current image retrieval systems use “one-shot”
queries to a database to retrieve similar images. Typically a K -
nearest neighbor kind of algorithm is used, where weights measur-
ing feature importance along each input dimension remain fixed
(or manually tweaked by the user), in the computation of a given
similarity metric. However, the similarity does not vary with equal
strength or in the same proportion in all directions in the feature
space emanating from the query image. The manual adjustment of
these weights is time consuming and exhausting. Moreover, it re-
quires a very sophisticated user. In this paper, we present a novel
probabilistic method that enables image retrieval procedures to au-
tomatically capture feature relevance based on user’s feedback and
that is highly adaptive to query locations. Experimental results are
presented that demonstrate the efficacy of our technique using both
simulated and real-world data. c© 1999 Academic Press
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The rapid advance in digital imaging technology makes p
sible the wide spread use of image libraries and databases.
in turn demands effective means for access to such databas
is well known that simple textual annotations for images are
ten ambiguous and inadequate for image database search.
retrieval based on image “content” becomes very attractive
8, 10]. Generally, a set of features (color, shape, texture, etc.
extracted from an image to represent its content. Then the im
database retrieval procedure becomes aK -nearest neighbor (K -
NN) search in a multidimensional space defined by the se
features under a given similarity metric, such as the Euclid
distance.

There are several fundamental problems associated with
simple content-based image retrieval scheme:

First. Features are unequal in their differential relevance
computing the similarity between images. Feature releva
may change from image to image and from location to lo
tion [1]. When a user says that two images are similar, the u
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ture, some combination of the features, or some features
unknown to the user. This implies that the similarity does
vary with equal strength or in the same proportion in all
rections in the feature space emanating from the query im
Figure 1 illustrates a case in point, where class boundarie
parallel to the coordinate axes. For querya, dimensionX is
more relevant, because a slight move along theX axis may
change the class label, while for queryb, dimensionY is more
relevant. For queryc, however, both dimensions are equa
relevant.

Second.The user understands more about the query, whe
the database system can only “guess” what the user is loo
for during the retrieval process. As the query examples in Fi
show, any fixed feature relevance scheme is incapable of b
customized to each individual query so as to achieve overall o
mal performance. As such, the system must interact with the
to learn feature differential relevance for each individual quer
guide its search and to iteratively refine its retrieval at run-tim

Finally. Different similarity (closeness) measures capture
ferent aspects of perceptual similarity between images [8].
mans do seem to selectively attend to features to optimize
visual behaviors [13]. In general, what similarity metric to us
image dependent and plays an important role in the outcom
the retrieval process. For example, in the context of “eigenfa
for recognition of human faces, the quadratic orMahalanobis
distance is more appropriate on the assumption of a Gaussia
tribution. While determining similarity metrics is an importa
research issue, here we are mainly concerned with learning
ture relevance. It turns out that there is a unique correspond
between our relative feature relevance measure and a weig
distance metric.

In this paper, we propose a novel method that provides a
lution to the problems discussed above. With this method
image retrieval system is able to learn differential feature r
vance in an efficient manner by estimating the strength of e
feature dimension in predicting the class (1) of a given qu
In addition, since the estimation process is carried out local
the vicinity of the input query, the method is highly adaptive
query locations.
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FIG. 1. Feature relevance varies with query locations.

We describe next the functional architecture of our retrie
system. Section 2 describes related work addressing issu
feature relevance computation. Section 3 discusses a simpK -
NN search technique and its limitations as a procedure for im
retrieval. Section 4 presents our approach to content-base
age retrieval that overcomes some of the limitations assoc
with the simpleK -NN search by capturing the notion of lo
cal feature relevance. Section 5 describes an efficient proce
for estimating local feature relevance. After that, we pres
in Section 6 experimental results demonstrating the efficac
our technique using both simulated and real-world data. Fin
Section 7 concludes this paper by pointing out possible ex
sions to the current work and future research directions.
pendix provides details on the Gabor features that are used i
research.
FIG. 2. System for learning feature relevance.
RELEVANCE LEARNING 151

al
s of

ge
im-
ted

ure
nt
of

lly,
n-
p-
this

System overview.Figure 2 shows the functional architec
ture of our system. Images in the database are represente
feature vectors, such as normalized mean and standard d
tions of responses from Gabor filters. The user presents a q
image to the system. At this time feature relevance along e
dimension is assumed to be equal, and its associated weigh
is initialized to 1/q, whereq is the dimension of the feature
space. The system carries out image retrieval using aK -NN
search, based on current weightings to compute the simila
between the query and all images in the database, and ret
the topK nearest images. The user then marks the retrieved
ages as positive (class 1) (e.g., click on an image by using
left mouse button) or negative (class 0) (e.g., click on an ima
by using the right button). The user “thinks” that the positiv
images look similar to the query image but the negative o
do not. Note that in practice, only images that are dissimilar
the query (negative images) need to be marked. These ma
images constitute training data. From the query and the train
data, the system computes local feature relevance in term
weights, from which a new round of retrieval begins. The abo
process repeats until the user is satisfied with the results or
system cannot improve the results from one iteration to the n

2. RELATED WORK

Friedman [6] describes an approach for learning local feat
relevance that combines some of the best features ofK -NN
learning and recursive partitioning. This approach recursiv
homes in on a query along the most (locally) relevant dimensi
where local relevance is computed from a reduction in predict
error given that query’s value along that dimension. This meth
performs well on a number of classification tasks. In contra
our method, inspired by [6], computes local feature relevan
directly from the conditional probabilities, since in a retriev
problem the “label” of the query is known.

A recent work [15] describes an image retrieval system t
makes use of retrieval techniques developed in the field ofinfor-
mation retrieval(IR) for text-based information. In this system
images are represented by weight vectors in the term sp
where weights capture the importance of components withi
vector as well as importance across different vectors over
entire data set. The system then uses relevance feedback t
date queries so as to place more weights on relevant terms
less weights on irrelevant ones. This query updating mechan
amounts to rotating the query vector toward relevant retriev
and, at the same time, away from irrelevant ones. One limitat
of this system is that it is variant to translation and general l
ear transformation because of its use of the nonmetric simila
function. Another limitation with the technique is that in man
situations the mere rotation of the query vector is insufficie
to achieve desired goals (see problems shown in Section 6.
We will further describe the technique in Section 6, where it

compared to the method introduced in this paper in a variety of
tasks.
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PCF, per category feature importance[3], technique com-
putes feature relevance based on conditional probabilities.
method estimates the conditional probabilityp(c | f ) for feature
f in every category and uses it as a weight forf in category
c. PCF assigns large weights to features having high correla
with the class. Clearly, feature importance as such is nonlo
and therefore, insensitive to query locations. In addition, th
global averaging correlation techniques do not work well
tasks such as the XOR problem shown in Fig. 1.

Trott and Leng [16] introduce aninteger programming(IP)
method for computing feature weights for an interactive retrie
task. In this task query’s feature values are interactively supp
by the user. The method imposes a fixed ratio between the w
of the last feature and the sum of the weights of all other feat
for training samples. This ratio is then used to generate a s
linear equations that can be solved using IP to produce fe
weights. While this method could be used for interactive retrie
to emancipate the user from manually adjusting feature we
for weighted similarity computation, its performance is not
known.

3. SIMPLE K-NEAREST NEIGHBOR SEARCH

SimpleK -nearest neighbor search, as an image retrieval
cedure, returns theK images closest to the query. Obvious
this involves the issue of measuring the closeness or simil
between two images. The most common measure of simil
between the two images is the distance between them. I
Euclidean distance

D(x, y) =
√√√√ q∑

i=1

(xi − yi )2 (1)

is used as the measure of similarity, then theK closest image
to the queryxQ are computed according to

{x | D(x, xQ) ≤ dK },

wheredK is the K th order statistic of{D(xi , xQ)}N1 and N is
the number of images in the database. The major appea
simpleK -NN search methods resides in their ability to prod
continuous and overlapping, rather than fixed, neighborho
and to use a different neighborhood for each individual quer
that all points in the neighborhood are close to the query.

One problem with Eq. (1) is that it does not take into acco
the influence of the scale of each feature variable in the dist
computation. Changing the scale of a feature dimension in
ferent amounts alters the overall contribution of that dimen
in the distance computation, hence its influence in the ne
neighbors retrieved. This is usually considered undesirable.
way to overcome this is to rescale each feature dimension s
the scales of all feature dimensions are the same after resc

thereby causing them to contribute equally to the distance c
culation in Eq. (1).
, AND QING
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An additional limitation of Eq. (1) is that the use of th
Euclidean distance, while simple computationally, implies th
the input space is isotropic or homogeneous. However, the
sumption for isotropy is often invalid and generally undesira
in many practical applications. Figure 1 illustrates a case
point. For querya, the preferred direction along which to sear
for similar samples is theY axis. That is, the search space
the vicinity of the query should be elongated along theY direc-
tion and constricted along the theX direction. Capturing such
information, therefore, is of great importance to any retrie
procedure in large database systems. The following sections
scribe a novel technique to achieve just that goal.

4. WEIGHTED K-NEAREST NEIGHBOR SEARCH

SimpleK -NN search clearly has its limitations as a procedu
for content-based image retrieval. The objective of our appro
is to develop a retrieval method that inherits the appealing pr
erties ofK -NN search, while at the same time overcomes
limitations by capturing the notion of local feature relevance

4.1. Local Feature Relevance

The retrieval performance for image databases can be c
acterized by two key factors.First, for a given query image, the
relevance of all the features input to the database system
not be equal for retrieving similar images. Irrelevant featu
often hurt retrieval performance.Second, feature relevance de
pends on the location at which the query is made in the fea
space. Capturing such relevance information is a prerequisit
constructing successful retrieval procedures in image databa

We note at the outset that this problem is opposite to t
ical classification problems based on lazy learning techniq
[11], such as nearest-neighbor kernel methods. While the go
classification is to predict the class label of an input query fr
nearby samples, the goal in retrieval is to find samples hav
the same “class label” as that of the query. Moreover, many l
learning techniques for classification lend themselves to the k
of problems retrieval tasks may face. It is important to real
that, unlike classification problems, the notion of classes in
age databases is a user-centered concept that is depende
the query image. There is no labelling of images in the datab
Nonetheless, the “class label” of an image is simply used h
as a vehicle to facilitate the theoretical derivation of our fe
ture relevance measure for content-based image retrieval. A
shall see later, the resulting relevance measure and its assoc
weightings are independent of image labels in the database
thus, fit our goals nicely here.

4.2. Local Relevance Measure

We begin this section by introducing some classification c
cepts essential to our probabilistic derivation.

In a two class (1/0) classification problem, the class lab

al-y∈ {0, 1} for query x is treated as a random variable from a
distribution with the probabilities{Pr(1| x),Pr(0| x)} [6]. We
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then have

f (x)
.=Pr(1 | x) = Pr(y = 1 | x) = E(y | x). (2)

To predicty atx, f (x) is first estimated from a set of training da
using techniques based on regression, such as the least-sq
estimate.2 Decision tree methods, neural networks, and near
neighbor kernel methods are examples of using this regres
paradigm to the classification problem. The Bayes classifier
then be applied to achieve optimal classification performanc
image retrieval, however, the “class label” ofx is known, which
is 1 in terms of the notation given above. All that is required
to exploit the differential relevance of input features for ima
retrieval. Consider the least-squares estimate forf (x). In the
absence of values for any variable assignments, it is simply

E[ f ] =
∫

f (x)p(x) dx. (3)

That is, the optimal prediction (in the least-squares sense) ff
is its average value. Now given only thatx is known at dimension
xi = z. The least-squares estimate becomes

E[ f | xi = z] =
∫

f (x)p(x | xi = z) dx. (4)

Here p(x | xi = z) is the conditional density of the other inpu
variables defined as

p(x | xi = z) = p(x)δ(xi − z)

/∫
p(x)δ(xi − z) dx, (5)

whereδ(x− z) is the Dirac delta function having the properti

δ(x − z) = 0 if x 6= z

and ∫ ∞
−∞

δ(x − z) dx = 1.

It is evident that

0≤ E[ f | xi = z] ≤ 1.

Furthermore, Eq. (4) shows the predictive strength (probabi
once the value of just one of the input featuresxi is known.

Let z be the query. Sincef (z)= 1 (recall that queryz has the
same class label (class one) as the positive images), it fol
that
f (z)− 0

2 Note that one can also use techniques based on density estimation to
pute f (x).

s
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is the largest error one makes in predictingf at z. That is,
f (z)− 0 is the error incurred when one predictsf (z) to be zero
(z is not in class one), but in factf (z) is in class one with prob
ability 1. On the other hand,

f (z)− E[ f | xi = z]

is the error one makes by predicting the probability ofz being in
class one asE[ f | xi = z], conditioned on featurexi taking the
valuez. Then

[( f (z)− 0)− ( f (z)− E[ f | xi = z])] = E[ f | xi = z] (6)

represents a reduction in error between the two predictions
can now define a measure of feature relevance for queryz as

ri (z) = E[ f | xi = z]. (7)

That is, featurexi is more relevant for queryz if it contributes
more to the reduction in prediction error (6).

The relative relevance, as a weighting scheme, can the
given by

wi (z) = (ri (z))t

/ q∑
l=1

(rl (z))t , (8)

wheret = 1, 2, giving rise to linear and quadratic weighting
respectively. In this paper we propose the exponential weigh
scheme

wi (z) = exp(Tri (z))

/ q∑
l=1

exp(Trl (z)), (9)

whereT is a parameter that can be chosen to maximize (m
mize) the influence ofri onwi . WhenT = 0 we havewi = 1/q,
thereby ignoring any difference between theri ’s. On the other
hand, whenT is large a change inri will be exponentially re-
flected inwi . In this case,wi is said to follow the Boltzmann dis
tribution. The exponential weighting is more sensitive to chan
in local feature relevance (7) and gives rise to better performa
improvement, as we shall see later.

It is clear from (8) and (9) that

0≤ wi (z) ≤ 1,

wherewi (z)= 0 indicates that knowingxi at z does not to help
predict the query. On the other hand,wi (z)= 1 states that having
the knowledge ofxi atz is sufficient to predict the query. Value
in between show the degrees of relevance thatxi exerts atz.
com-It reflects the influence of featurexi on the variation off (x)
at query locationz. Thus, (8) and (9) can be used as weights
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FIG. 3. (a) LargeE[ f | x2= z] implies that the subspace spanned byX1 at z is likely to contain samples having the same class label as the query. (b) Small
r

a
u
n

i

s

e

t

o
e

t

e

c
th

en-
long
of

that
ion

nce
ere
d by
fea-
cor-

ty is
it is
ing
nce
ion.
ect

ures
ith
ven
ique
rele-
sly.
.

7).
can
, (8)

be the training data. Herex j denotes the feature vector
E[ f | x2= z] indicates that the subspace is unlikely to have samples simila

associated with features for weighted similarity computation

D(x, y) =
√√√√ q∑

i=1

wi (xi − yi )2. (10)

It can be shown that (10) is indeed a metric. These weights en
the similarity computation to elongate less important feat
dimensions and, at the same time, to constrict the most influe
ones. Note that the technique isquery-basedbecause weightings
depend on the query [2].

A justification for (7) and, hence, (8) and (9), goes like th
Suppose that the value ofE[ f | xi = z] (4) is large, which implies
a large weight along dimensionxi . This, in turn, penalizes point
alongxi that are moving away fromz. Now E[ f | xi = z] can be
large only if the subspace spanned by the other input dimens
atxi = z likely contains samples coming from class 1, assumin
uniform distribution. This scenario is illustrated in Fig. 3a. Th
a large weight assigned toxi based on (8) says that moving awa
from the subspace, hence from the data in class 1, is a bad
to do. Similarly, a small value ofE[ f | xi = z], hence a small
weight, indicates that in the vicinity ofxi at z one is unlikely to
find samples similar to the query, as shown in Fig. 3b. Theref
in this situation in order to find samples resembling the qu
one must look farther away fromz.

Another way to look at (4) is that the conditional expec
tion can be considered as a “measure” indicating the dense
(sparseness) of data points having the same label as the q
in a small neighborhood of featurexi at z. When data are dens
(large conditional expectation) along featurexi atz, it is given a
large weight. Likewise, sparseness (small conditional expe
tion) results in a smaller weight. This is in direct analogy to
use of the quadratic distance

‖y− x‖2 = (y− x)TΣ−1(y− x), (11)
whereΣ is the covariance matrix, assuming a Gaussian dis
bution. If Σ is diagonal, (11) gives rise to a (squared) weight
to the query.
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Euclidean distance (10), where weights along feature dim
sions are inversely proportional to the variance (denseness) a
that dimension. That is, Eqs. (4) and (8) capture the notion
variable scaling in that they rescale each input feature so
the contribution of all the features to the distance computat
is “equal.”

We have so far only considered estimating feature releva
along each individual dimension one at a time. However, th
are situations where feature relevance can only be capture
examining several feature variables simultaneously. That is,
ture variables are not independent, and there is a degree of
relation among them. There is no doubt that such a capabili
highly desirable in many database applications. However,
clear that, in the absence of any other information, determin
which feature(s) should be examined to estimate local releva
adds additional complexities to feature relevance computat
Furthermore, it is unclear as to how much gain one can exp
when there are insufficient data3 for conducting such joint esti-
mation. One way to decorrelate association among the feat
is to rotate the feature dimensions so that they coincide w
the eigenvectors of a sample covariance matrix. Note that, e
without such a transformation to the eigen space, the techn
described here can be readily extended to estimating local
vance, conditioned on multiple feature variables simultaneou
We do not address this issue further in the rest of this paper

5. ESTIMATION OF RELEVANCE

In order to estimate (8) and (9), one must first compute (
The retrieved images with relevance feedback from the user
be used as training data to obtain estimates for (7), hence
and (9). Let

{x j , yj }K1
tri-
ed 3 Recall that there is a very limited number of returns at each retrievel.
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representingj th retrieved image, andyj is either 1 (relevant)
or 0 (irrelevant) marked by the user as the class label assoc
with x j . To computeE[ f | xi = z], recall that f (x)= E[y | x].
Thus, it follows that

E[ f | xi = z] = E[y | xi = z].

However, since there may not be any data atxi = z, the data from
the vicinity ofxi atzare used to estimateE[y | xi = z], a strategy
suggested in [6]. Therefore, (7) can be estimated according

Ê[y | xi = z] =
K∑

j=1

yj 1(|xji −z| ≤ Ä)

/ K∑
j=1

1(|xji −z| ≤ Ä),

(12)

where 1(·) is an indicator function. That is, 1(·) returns 1 if its
argument is true, and 0 otherwise.Ä can be chosen so that the
are sufficient data for the estimation of (4). In this paper,Ä is
chosen such that

K∑
j=1

1(|xji − z|≤Ä) = C, (13)

whereC≤ K is a constant. It represents a trade-off betw
bias and variance. In addition, (12) can be computed with
subregion, thus making the relevance measure more local.
that it is possible to extend this technique to multiple class si
tions where the user can grade the retrieved images. Our ret
and feature relevance computation algorithm is summarize
Fig. 4, whereprecisiondenotes the average retrieval precis
(18).

The bulk of the computational expense involved in the f
ture relevance estimation algorithm shown in Fig. 4 is consu
by the K -nearest neighbor search, while the relevance est
tion is quite efficient. This is particularly pronounced when
image database is large. In practice, however, the amou
computation associated with the nearest neighbor search
be significantly reduced by partitioning or indexing the ima
database in such a way that the nearest neighbor search c
localized within a given partition. This issue, however, is beyo
the scope of this paper.

We use a simple two-class problem, shown in Fig. 5, to ill
trate the feature relevance computation process. In this prob
the data for both classes are generated from a uniform dist
FIG. 4. The probabilistic feature relevance learning (PFRL) Algorithm.
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FIG. 5. A simple two-class problem with a uniform distribution. The squa
(as indicated by an arrow) shows the query.

tion. The number of data points for both classes is roughly
same. The red square, located at (1, 0.1), represents the q
Figure 6a shows the 200 nearest neighbors (red squares) o
query found by the unweightedK -NN method (1). The resulting
shape of the neighborhood is circular, as expected. In cont
Fig. 6b shows the 200 nearest neighbors of the query, comp
by the technique described above. That is, the retrievals (
relevance feedback) shown in Fig. 6a are used to compute
and, hence, (9) with estimated new weights:w1= 0.134 and
w2= 0.866. As a result, the new (elliptical) neighborhood
elongated along the horizontal axis (the less important one)
constricted along the vertical axis (the more important one).
effect is that there is a dramatic increase in the retrieved nea
neighbors that are similar to the query.

This example demonstrates that even a simple problem
which the class boundary ideally separates two classes can
efit from the feature relevance learning technique just descri
especially when the query approaches the class boundary
important to note that for a given distance metric the shap
a neighborhood is fixed, independent of query locations. F
thermore, any distance calculation with equal contribution fr
each feature variable will always produce spherical neighb
hoods. Only by capturing the relevant contribution of the feat
variables can a desired neighborhood be realized that is hi
customized to query locations.

Experimental validation. We now present an experiment
validation of the feature relevance computation algorithm
scribed above. In this experiment, the problem is designe
such a way that all feature dimensions have the same globa
evance. However, they have unequal local differential releva
depending on query locations. There areq= 5 feature dimen-
sions and two classes. The data are generated from a no
distributionx∼ N(0,Σ), whereΣ is given by
Σ = diag{0.752}q1.
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FIG. 6. Effect of feature relevance on retrieval: (a) circular n

The classes are defined by

5∑
i=1

x2
i ≤ 2.3⇒ class 0, otherwise⇒ class 1.

That is, class 0 is completely surrounded by class 1 in the fea
space. There are 10,000 data points total in the database
roughly an equal number of data points in each class.

Four queries from class 1 are generated such that some fe
dimensions are more relevant than others. The four repres
tive queries are shown in Table 1. Clearly, featurex5 is the most
discriminating dimension for queryq1. Similarly, featuresx4 and
x5 are the most influential dimensions for queryq2 and features
x3, x4, and x5, for queryq3. For queryq4 all the dimensions
exceptx1 are important.

Figure 7 shows the performance of the three weigh
schemes (exponential (9), quadratic and linear (8)) on t
queries. The performance is measured using the retrieval
cision (the number of positive (class 1) retrievals divided by
total number of retrievals) as a function of time. Note that at
first iteration, the retrieval precision is produced by unweigh
K -NN search (1). All three weightings demonstrate signific
performance improvement over the simple unweightedK -NN
method on all the queries. However, the improvement is m
pronounced when the number of the relevant features is s
As the number of the relevant features increases, our techn
reduces to the unweightedK -NN method as expected. Th
is correct since when all the features are equally relevan

TABLE 1
Four Representative Queries

Query x1 x2 x3 x4 x5

q1 0.01 0.005 0.02 0.005 1.531
q2 0.01 0.02 0.015 1.081 1.081
q3 0.03 0.08 0.88 0.88 0.88
0.02 0.76 0.76 0.76 0.76
ighborhood (no learning); (b) elliptical neighborhood (after learning).

ure
with

ture
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the

unweighted Euclidean distance metric (1) is the correct
to use.

It is interesting to note that the exponential weighting
seems to produce the best performance on all queries. Th
largely due to its sensitivity to changes in conditional exp
tation (7). Furthermore, it can be seen from Fig. 7 that th
is an inherent trade-off between sensitivity and performan
As the number of relevant features increases, the expone
weighting managed to capture the subtle difference betwee
relevant and irrelevant features, as evidenced by sharp incre
in retrieval precision. However, a dramatic increase in retrie
precision increases positive (relevant) images in the resultin
trievals, which in turn makes it highly likely, based on (12), th
every dimension becomes relevant (7) at next iteration, the
lowering retrieval performance. This is particularly true wh
more features are relevant. This type of sensitivity, however,
be a huge advantage in practical applications, for it reduces
amount of interaction required between the user and the im
retrieval process.

Figure 8 illustrates weight changes as a function of iterati
based on the quadratic weighting (8). Here two horizontal a
represent input features and iterations, respectively, while
vertical axis represents the magnitude of the weights. It can
that for all the queries the weights associated with the rele
features are increased and the weights associated with the
evant ones are decreased after learning has taken place.
results show convincingly that our method can indeed cap
local feature relevance.

We desire that the algorithm be robust in that it produ
similar results with similar queries, where by similar queries
mean those queries having the same number of relevant fea
In order to see if the algorithm can achieve performance rob
ness, four additional query points are randomly generated w
a neighborhood of each representative query. Figure 9 sh
the performance of the quadratic weighting on these querie
can be seen clearly that the algorithm is indeed capable of
ducing similar results and capturing corresponding feature(s

relevant for the given similar queries. Moreover, additional ex-
periments were carried out to determine how the size ofÄ in
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FIG. 7. Performance of exponential, qu

(12) will affect the performance of the proposed technique.
omit the details of the experiments here, except to state tha
method can tolerate a wide range of values forÄ.

6. EMPIRICAL RESULTS

In the following we compare two competing retrieval metho
using both simulated and real data. The simulated data ex
ments allow us to reliably predict the strengths and limitatio
of algorithms because the precise nature of the problem th
gorithms are facing is known.

METHOD 1. Probabilistic feature relevance learning (PFR
described in Fig. 4, coupled with the exponential weight
scheme (9).

METHOD2. The relevance feedback method (RFM) descri
in [15]. RFM requires that features be normalized according
the following. Let

Fi = ( fi 1, . . . , fik, . . . , fiq )

be the feature vector representing thei th image in the database
Fi is first transformed into( )
fi 1
mean1

, . . . ,
fik

meank
, . . . ,

fiq
meanq

(14)
adratic, and linear weightings on four queries.

e
our

ds
eri-
ns
al-

L)
g

ed
to

.

where meank is the mean value of thekth feature dimension
Then

ICIi = (log2(σi 1+ 2), . . . , log2(σik + 2), . . . , log2(σiq + 2)),

(15)

whereσik is the standard deviation of thekth feature dimension
in CIi . Finally, the normalized feature vector is simply a prod
of CIi andICIi :

F̃ i = CIi × ICIi . (16)

If x represents the current query, RFM computes a new q
according to

x = αx+ β
(

1

Nr

∑
yi∈Nr

yi

)
− γ

(
1

Nir

∑
yi∈Nir

yi

)
, (17)

whereNr represents the set of relevant retrievals andNir irrel-
evant ones.

Note that there is a third method, the unweightedK -NN
method, that is being compared against implicitly. The fi

retrieval by PRFL is based on the unweightedK -NN method.
Also, in all the experiments, the performance is measured using
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the average retrieval precision

precision= Positive Retrievals

Total Retrievals
× 100%. (18)

6.1. Experiments on Simulated Data

For all the experiments reported in this subsection, the feat
are first normalized over the entire data according to (14), (
and (16) for RFM, while no normalization takes place for PFR
There are 500 data in each database.

6.1.1. The Problems

PROBLEM 1 (Two-dimensional XOR). This is the problem
shown in Fig. 1. Two classes are distributed in diagonal qu
rants. The data∈ [0, 2]2 for both classes are generated from
uniform distribution. While the features are rescaled to lie

tween 0 and 1 for PRFL, they are normalized according to (1
(15), and (16) for RFM.
nction of iteration: (a)q1; (b) q2; (c) q3; (d) q4.

res
5)
.

d-
a
e-

PROBLEM2 (Four-dimensional spheres with six noise feature
This problem is taken from [7]. There are 10 features and t
classes in this problem. The last six features are noise varia
with standard Gaussian distributions, independent of each o
and the class membership. The data for both classes are g
ated from a standard normal distribution. The data for class
have the property that the radius, computed from the first f
features, is greater than 3 while the data for class two do
have such restriction. Class one basically surrounds class tw
the subspace spanned by the first four features.

PROBLEM 3 (Ten-dimensional spheres). Like Problem
there are 10 features and two classes. All 10 features are i
pendent standard normal. All data in class one have the prop
that their radius is greater than 3 and less than 6, while d
in the second class do not have such restrictions. There ar
noise variables in this problem. Discriminating information o

4),curs along only one direction in the feature space. Further, this
direction changes when moving across the input space and every
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FIG. 9. System performance on simulated data. Relevant f

feature becomes important at some point in the space. Again
problem is taken from [7].

PROBLEM 4 (Ten-dimensional ellipsoidals). There are 10 fe
tures and two classes in this problem. All of the data are g
erated according to a standard normal distribution. Two cla
are defined by

10∑
i=1

x2
i

/
i ≤ 2.5⇒ class 1, otherwise⇒ class 2.

All features are relevant in this problem, but the higher numbe
features are more so. This problem is taken from [6].

PROBLEM 5 (Eleven-dimensional hypercube with 10 noise fe
tures). There are 11 features and two classes in this prob
All 11 features are uniformly distributed between−1 and 1,
independent of each other. The data for class one have the
erty:−1≤ x1<−0.5 or 0≤ x1< 0.5, whereas, the data for clas
two have the restriction that−0.5≤ x1< 0 or 0.5≤ x1≤ 1. That
is, the two classes separate each other. The class members
a simple function ofx1 only, and the last 10 features contain
additional information. They serve as noise variables.

6.1.2. Results
shows the average retrieval precisions obtained by
eting methods for the problems described above.
eatures: (a)x5, (b) x4, andx5; (c) x3, x4, andx5; (d) x2, x3, x4, andx5.
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third column in Table 2 shows the average retrieval precisi
obtained by each method without any relevance feedback (0
For PRFL, this average retrieval precision is obtained by the u
weightedK -NN method. The fourth column shows the averag
retrieval precision computed after learning has taken place on
(1 rf). That is, relevance feedback obtained from the previo
retrieval is used to compute a new query in case of RFM
probabilistic local feature relevance, hence new weighting,
case of PFRL, respectively. The last column shows the relat

TABLE 2
Average Retrieval Precision for Simulated Data

Problem Method 0 (rf ) 1 (rf ) Improvement

Problem 1 PFRL 96.50 97.75 1.98
RFM 66.49 67.38 0.89

Problem 2 PFRL 65.37 83.42 38.24
RFM 57.37 72.57 32.42

Problem 3 PFRL 59.80 76.59 53.22
RFM 52.23 59.20 16.32

Problem 4 PFRL 61.23 80.80 52.70
RFM 54.93 66.86 24.86

Problem 5 PFRL 59.82 88.02 53.47

the

The
RFM 57.14 75.46 41.87
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performance improvement by the two methods, where the a
age performance improvement (API) is computed accordin

API =
Positive Retrievals(n+ 1)− Positive Retrievals(n)

Positive Retrievals(n)
×100%

(19)

averaged over all queries, where Positive Retrievals(n) repre-
sents the positive retrievals at thenth iteration.

There are two procedural parameters (T (9) andC (13) input to
the PFRL algorithm. The values of the parameters used to ob
the results reported in Table 2 were determined experimen
These values are (15, 16), (14, 16), (15, 10), (10, 8), and (2
for problems 1, 2, 3, 4, and 5, respectively. Similarly, we exp
imented with the parameters (α, β, andγ ) [15] input to RFM,
and the best performance results found in those experimen
reported in Table 2. These values are (1, 2, 1), (2, 2, 3), (2, 4
(1, 4, 2), and (2, 2, 4) for problems 1, 2, 3, 4, and 5, respectiv
Note that these experiments are by no means exhaustive.

It can be seen from Table 2 that both methods show pe
mance improvement across all the tasks. However, the ma
of improvement achieved by PRFL are much greater than
obtained by RFM. Furthermore, PRFL did consistently be
than RFM. One thing to notice is that RFM performed poo
on the XOR problem (Problem 1). This can be attributed to
nonmetric similarity function employed by RFM [15],

Sim(x, y) = xty
‖x‖ ‖y‖ , (20)

where x and y are feature vectors, t denotes transpose,
‖·‖ represents theL2 norm. This function is invariant to ro
tation and dilation, but it is variant to translation and gene
linear transformation [4]. Should we normalize the features
as to have zero mean and unit variance, RFM would have
tained the same performance level for problem 1 as tha
PRFL.

An important observation one can make from Table 2 is tha
the problems, except the first one, do not favor RFM regard
of normalization procedures employed. It is not hard to sh
that, in these problems, a line in the input space along a q
vector will almost always intercept both classes. In this ca
the mere rotation of the query vector, which is carried out
RFM for computing a new query vector using relevance fe
back (Eq. 17), does not necessarily move the query closer t
relevant class and away from the irrelevant one. On the o
hand, in PFRL capturing local feature relevance is sufficien
produce a neighborhood whose shape is tailored to the parti
query so that the number of the retrievals similar to the que
increased, as evidenced by the results shown in Table 2.

Note that here we only show results at one iteration after

ceiving the relevance feedback. The reason is that subseq
relevance feedbacks only give rise to minor performance i
, AND QING
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provement in the average retrieval precision. This result is
roborated by the experiments performed in [15]. As pointed
in [15], this is considered highly desirable, since acceptable
sults can be achieved with the minimum number of feedb
cycles. As a comparison, however, we performed experim
in which RFM was allowed to receive the second relevance fe
back and recompute a new query vector. The average retr
precisions for the five problems are 67.91, 78.16, 64.72, 70
and 83.44, respectively. The results show that given twice
amount of computation, RFM still could not achieve the leve
performance obtained by that of PFRL on the problems ex
ined here.

It may be argued that the problems chosen here are not
ticularly in favor of RFM. Most of the problems are construct
so that one class is surrounded by another in the feature s
This type of situation presents most difficulties to RFM. Ho
ever, it also poses considerable challenges to the PRFL me
Differential relevance information occurs along one directi
Further, this direction changes when one moves across the
ture space. In general, such relevance information is difficul
any method to capture. And it seems likely that this type of
uation would occur often in the real world. Thus, it is our vie
that these problems provide a reasonable basis for comp
the two competing methods.

6.2. Experiments on Real Data

In order to compare the two competing methods more ob
tively, original features are normalized in three different wa
For the probabilistic feature learning method described ab
the normalization is carried out along each feature dimen
over the entire data set in such a way that the normalized fea
values lie between 0 and 1. We call this normalization proc
scale. This process does not in any way provide inductive bia
favor of the learning method. It simply removes some of artifa
due to different scales of variables that are generally consid
undesirable in the absence of any additional information. T
is particularly true for retrieval procedures whose distance c
putation is based on the Euclidean metric (1).

For RFM, the features are normalized according to (14), (
and (16). This normalization process attempts to explicitly c
ture feature importance within a feature vector as well as ac
different feature vectors over the entire data collection, ther
enabling RFM to take advantage of some of the well-known
sults from information retrieval. Following [15], we denote th
normalization procedure byt f × id f .

While the two competing methods perform image retrieva
the same database, they use different input representation
order for the two methods to receive exactly the same inputs
features are normalized so that each dimension will have
mean and unit variance. And as such, the normalized fea
cannot be further altered by (14), (15), and (16). Thus, the

uent
m-
methods see exactly the same database and input representation.
This procedure is denoted by 01.
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6.2.1. The Problems

PROBLEM 1. The data in the first problem, from the UC
repository [12] consist of images that were drawn rando
from a database of seven outdoor images. The images
hand-segmented by the creators of the database to classify
pixel. Each image is a region. There are seven classes:brick-
face, sky, foliage, cement, window, path, andgrass, each having
330 instances. Thus, there are total 2310 images in the data
These images are represented by 19 real-valued attribute
are described in Table 3. These features are basically stati
moments and line counts. For further details, see [12].

PROBLEM 2. The data in the second problem are obtai
from MIT Media Lab at ftp://whitechapel.media.mit.edu/pu
VisTex in the same way as in [15]. There are 40 texture ima
that are manually classified into 15 classes. Each of these im
is then cut into 16 nonoverlapping images of 128× 128. Thus,
there are total 640 images in the database. Also, the numb
images in each class varies from 16 to 80. The images in
database are represented by 16-dimensional feature vector
use 16 Gabor filters (two scales and four orientations), descr
in the Appendix, for feature extraction. The meanµmn (21) and
the standard deviationσmn (22) of the magnitude of the trans
form coefficients are used as feature components (23) after b
normalized by the standard deviations of the respective fea
over the entire set of images in the database. Sample image
shown in Fig. 10.

6.2.2. Results

For both problems, each image in the database is select
a query and top 20 nearest neighbors are returned that pr

TABLE 3
Feature Information

Feature Description

1 Region-centroid-col Center pixel column of the region
2 Region-centroid-row Center pixel row of the region
3 Region-pixel-count Number of pixels in a region
4 Short-line-density-5 Line count, low contrast,≤5
5 Short-line-density-2 Line count, high contrast,>5
6 Vedge-mean Contrast of horizontally adjacent pixe
7 Vedge-sd See 6
8 Hedge-mean Contrast of vertically adjacent pixels
9 Hedge-sd See 8

10 Iintensity-mean (R+G+B)/3
11 Rawred-mean Average of the R value
12 Rawblue-mean Average of the B value
13 Rawgreen-mean Average of the G value
14 Exred-mean (2R− (G+B))
15 Exblue-mean (2B− (G+R))
16 Exgreen-mean (2G− (R+B))
17 Value-mean 3D nonlinear transformation of RGB
18 Saturation-mean See 17

19 Hue-mean See 17
RELEVANCE LEARNING 161

I
ly
ere

each

ase.
that

tical

ed
b/
ges
ages

r of
this
. We
bed

-
eing
ures
s are

d as
vide

ls

FIG. 10. Sample images from MIT database.

necessary relevance feedback. The average retrieval precisio
summarized in Table 4. There are four rows under each probl
in the table. The first two rows indicate the performance of th
two methods under the condition that the features are normaliz
so as to have zero mean and unit variance. The third row sho
the results obtained by PFRL, conditioned on the features be
scaled to lie between 0 and 1. The fourth row shows RFM
performance given that the features are normalized according
(14), (15), and (16).

The second column in Table 4 shows the average retrie
precision obtained by each method without any relevance fee
back. The third column shows the average retrieval precisi
computed after learning has taken place. That is, relevance fe
back obtained from the previous retrieval is used to compute
new query in case of RFM, or to estimate local feature rel
vance, hence a new weighting, in case of PFRL, respective

TABLE 4
Average Retrieval Precision for Real Data

UCI database

Method 0 (rf ) 1 (rf ) Improvement

PFRL (01) 92.10 95.64 6.82
RFM (01) 91.25 95.12 9.75
PFRL (scale) 92.08 96.05 7.66
RFM (t f × id f ) 86.39 91.95 15.33

MIT database

Method 0 (rf ) 1 (rf ) Improvement

PFRL (01) 77.05 84.02 14.37
RFM (01) 81.79 89.63 17.76
PFRL (scale) 78.27 84.44 12.70

RFM (t f × id f ) 83.74 90.23 13.53
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precision of 95 is achieved. This illustrates that capturing local
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The last column shows relative performance improvemen
the two methods. It can be seen from Table 4 that both meth
demonstrate significant performance improvement across
tasks. In general, PFRL seems to slightly outperform RFM
the UCI data, whereas RFM achieves better results with the
data. The two competing methods seem compatible, at leas
the problem experiments here. Furthermore, various norma
tion techniques do not seem to have a significant impact on
overall ability of each method. Finally, similar to the simulat
data experiments, when RFM is allowed to update the qu
after receiving the second relevance feedback, there is a s
improvement in the retrieval results (UCI data: 96.63 (01) a
93.94 (t f × id f ); MIT data: 91.81 (01) and 91.88 (t f × id f )).
However, this is at the expense of increased computation, w
can be prohibitive when the database is very large.

Note that the procedural parameters (T (9) andC (13)) input to

PFRL were determined empirically, and they were set to 15 andfeature relevance indeed helps to improve retrieval performance.
FIG. 11. Retrieval results without learning, where
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16, respectively, in all the experiments reported in this sect
Similarly, we experimented with the parameters (α, β, andγ )
[15] input to RFM, and the best performance results found
those experiments are reported in Table 4. For the UCI d
these values are (1, 3, 2) for 01 normalization and (1, 4, 3)
(t f × id f ). Likewise, for the MIT data these values are (1,
1) for 01 normalization and (1, 4, 2) for (t f × id f ), respec-
tively.

Figure 11 shows a particular retrieval result obtained by PF
from the MIT image database with no learning; that is, each
mension is weighted equally in the distance computation (1
where a retrieval precision of 25 is achieved. Note that Fig.
represents the query image. In contrast, Fig. 12 shows the
trieval results after learning has taken place, where the res
in Fig. 11 provide relevance feedback. In this case, a retrie
(a) represents the query image. Retrieval precision: 0.25.
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FIG. 12. Retrieval results with learning, where

7. CONCLUSIONS

This paper presents a novel probabilistic feature releva
learning technique for efficient content-based image retrie
The experimental results using both simulated and real data s
convincingly that learning feature relevance based on us
feedback can indeed improve retrieval performance of an
age database system. Furthermore, since the relevance es
is local in nature, the resulting retrieval, in terms of the sha
of the neighborhood, is highly adaptive and customized to
query location.

Our retrieval technique learns local feature relevance for e
given query. However, it is possible that the knowledge acqu
during one retrieval can be gradually collected and it can
come part of the database itself through continuous learn
This knowledge can be used in conjunction with case-ba
2, 14] to achieve generalization in future retrieva
rther optimize the performance of the system.
a) indicates the query image. Retrieval precision: 95.
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A potential extension to the technique described in this pa
is to consider additional derived variables (features) for lo
relevance estimate, thereby contributing to the distance cal
tion. The derived features are functions, such as linear funct
of the original features. When the derived features are m
informative, huge gains may be expected. On the other han
they are not informative enough, they may cause retrieval
formance to degrade since they add to the dimensionality co
The challenge is to be able to have a mechanism that comp
such informative derived features efficiently.

APPENDIX: GABOR WAVELET REPRESENTATION

We use Gabor wavelets [9, 17] to extract texture feature
two-dimensional Gabor functiong(x, y) can be written as(

1
) [

1
(

x2 y2
) ]
lsg(x, y) =
2πσxσy

exp −
2 σ 2

x

+
σ 2

y

+ 2π jW x .



U

e

n

n

4
n

ms,

,

ips

m,

clas-

age

val

of

ses.

ion

July

with
r-

case

cog-
164 PENG, BHAN

Using the above formula as the mother function, a set of s
similar filters are derived through the generating function

gmn(x, y) = a−mg(x′, y′)

and

x′ = a−m(x cosθ + y sinθ ), y′ = a−m(−x sinθ + y cosθ ),

wherea> 1, θ = nπ/K , n= 0, 1, . . . , K − 1, andm= 0, 1, . . . ,
S− 1. K is the total number of orientations andS is the total
number of scales.

Given an imageI (x, y), its Gabor wavelet transform is the
defined

Wmn(x, y) =
∫ ∫

I (x1, y1)g∗mn(x − x1, y− y1) dx1 dy1,

where∗ indicates the complex conjugate. We then compute

µmn =
∫ ∫
|Wmn(x, y)| dx dy (21)

and

σmn =
√∫ ∫

(|Wmn(x, y)| − µmn)2 dx dy. (22)

In our system,S= 2 andK = 4, thereby generating a 16-dime
sional feature vector of the form for each texture image

f = [µ00σ00 · · ·µ16σ16]. (23)
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