Computer Vision and Image Understanding
Vol. 75, Nos. 1/2, July/August, pp. 150-164, 1999

®
Atrticle ID ¢viu.1999.0770, available online at http://www.idealibrary.coml DE &l.

Probabilistic Feature Relevance Learning
for Content-Based Image Retrieval

Jing Pend, Bir Bhanu, and Shan Qing

Center for Research in Intelligent Systems, University of California, Riverside, California 92521
E-mail: {jp,bhanu,shaj@vislab.ucr.edu

really means that the images are similar in an individual fe

Most of the current image retrieval systems use “one-shot”
queries to a database to retrieve similar images. Typically a K-
nearest neighbor kind of algorithm is used, where weights measur-
ing feature importance along each input dimension remain fixed
(or manually tweaked by the user), in the computation of a given

ture, some combination of the features, or some features <
unknown to the user. This implies that the similarity does n
vary with equal strength or in the same proportion in all di
rections in the feature space emanating from the query ima
Figure 1 illustrates a case in point, where class boundaries

similarity metric. However, the similarity does not vary with equal
strength or in the same proportion in all directions in the feature
space emanating from the query image. The manual adjustment of
these weights is time consuming and exhausting. Moreover, it re-
quires a very sophisticated user. In this paper, we present a novel
probabilistic method that enables image retrieval procedures to au-
tomatically capture feature relevance based on user’s feedback and
that is highly adaptive to query locations. Experimental results are
presented that demonstrate the efficacy of our technique using both
simulated and real-world data. © 1999 Academic Press

parallel to the coordinate axes. For querydimensionX is
more relevant, because a slight move along haxis may
change the class label, while for qudrydimensionY is more
relevant. For quengc, however, both dimensions are equally
relevant.

Second.The user understands more about the query, where
the database system can only “guess” what the user is look
for during the retrieval process. As the query examples in Fig.
show, any fixed feature relevance scheme is incapable of be
customizedto eachindividual query so as to achieve overall of
mal performance. As such, the system must interact with the u:
to learn feature differential relevance for each individual query
guide its search and to iteratively refine its retrieval at run-tim
) S ) Finally. Different similarity (closeness) measures capture di

_The rapid advance in digital imaging technology makes pOgsrent aspects of perceptual similarity between images [8]. H
sible the wide spread use of image libraries and databases. Thigs do seem to selectively attend to features to optimize th
in turn demands effective means for access to such databasggs|fa| behaviors [13]. In general, what similarity metric to use |
is well kpown that simple textual an.notations forimages are QFhage dependent and plays an important role in the outcome
ten ambiguous and inadequate for image database search. TiiSerieval process. For example, in the context of “eigenface
retrieval based on image “content” becomes very attractive g, recognition of human faces, the quadraticMahalanobis
8, 10]. Generally, a set of features (color, shape, texture, etc.) gf&ance is more appropriate on the assumption of a Gaussian
extracted from an image to representits content. Then the imaggtion. While determining similarity metrics is an importan
database retrieval procedure becomésaearest neighbol(-  research issue, here we are mainly concerned with learning f
NN) search in a multidimensional space defined by the set@fe relevance. It turns out that there is a unique corresponde
features under a given similarity metric, such as the Euclideggnyeen our relative feature relevance measure and a weigt

distance. _ ~ distance metric.
There are several fundamental problems associated with this

simple content-based image retrieval scheme: In this paper, we propose a novel method that provides a :
lution to the problems discussed above. With this method

First. Features are unequal in their differential relevance f@hage retrieval system is able to learn differential feature rel
computing the similarity between images. Feature relevanggnce in an efficient manner by estimating the strength of e
may change from image to image and from location to l0Cgsatyre dimension in predicting the class (1) of a given quet
tion [1]. When a user says that two images are similar, the uggfqgdition, since the estimation process is carried out locally

the vicinity of the input query, the method is highly adaptive t

query locations.

1. INTRODUCTION

1 Corresponding author.

150

1077-3142/99 $30.00
Copyright© 1999 by Academic Press
All rights of reproduction in any form reserved.



PROBABILISTIC FEATURE RELEVANCE LEARNING 151

Y a System overview.Figure 2 shows the functional architec-
/ ture of our system. Images in the database are represented
feature vectors, such as normalized mean and standard de

tions of responses from Gabor filters. The user presents a qu
image to the system. At this time feature relevance along ea
dimension is assumed to be equal, and its associated weight
is initialized to 1/q, whereq is the dimension of the feature
space. The system carries out image retrieval usitg-ldN
o ® search, based on current weightings to compute the similari
‘\ between the query and all images in the database, and retu
b the topK nearest images. The user then marks the retrieved it
ages as positive (class 1) (e.g., click on an image by using t
left mouse button) or negative (class 0) (e.g., click on an imag
X by using the right button). The user “thinks” that the positive
images look similar to the query image but the negative one
do not. Note that in practice, only images that are dissimilar t
the query (negative images) need to be marked. These maril
images constitute training data. From the query and the traini

data, the system computes local feature relevance in terms

We describe next the functional architecture of our retrievlajghts, from which a new round of retrieval begins. The abov
system. Section 2 describes related work addressing iSSUe3 8baqq repeats until the user is satisfied with the results or t
feature relevance computation. Section 3 discusses a skpleg, stom cannotimprove the results from one iteration to the ne:
NN search technique and its limitations as a procedure forimage
retrieval. Section 4 presents our approach to content-based im-
age retrieval that overcomes some of the limitations associated
with the simpleK-NN search by capturing the notion of lo-
cal feature relevance. Section 5 describes an efficient procedurEfiedman [6] describes an approach for learning local featu
for estimating local feature relevance. After that, we presefftlevance that combines some of the best featurels -0fN
in Section 6 experimental results demonstrating the efficacy!6@rning and recursive partitioning. This approach recursive
our technique using both simulated and real-world data. Finaljpmes in on aquery along the most (locally) relevant dimensio
Section 7 concludes this paper by pointing out possible extaMpere local relevance is computed from a reduction in predictic
sions to the current work and future research directions. ABLror given that query’s value along that dimension. This methc

pendix provides details on the Gabor features that are used in f#§§forms well on a number of classification tasks. In contras
research. our method, inspired by [6], computes local feature relevanc

directly from the conditional probabilities, since in a retrieva
problem the “label” of the query is known.

A recent work [15] describes an image retrieval system th:
makes use of retrieval technigues developed in the fidlfof-
mation retrieval(IR) for text-based information. In this system,
images are represented by weight vectors in the term spa
where weights capture the importance of components within
vector as well as importance across different vectors over tl

vl

0 1

FIG. 1. Feature relevance varies with query locations.

2. RELATED WORK
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FIG. 2. System for learning feature relevance.

entire data set. The system then uses relevance feedback to
date queries so as to place more weights on relevant terms ¢
less weights on irrelevant ones. This query updating mechanis
amounts to rotating the query vector toward relevant retrieva
and, atthe same time, away from irrelevant ones. One limitatic
of this system is that it is variant to translation and general lir
ear transformation because of its use of the nonmetric similari
function. Another limitation with the technique is that in many
situations the mere rotation of the query vector is insufficier
to achieve desired goals (see problems shown in Section 6.1.
We will further describe the technique in Section 6, where it i
compared to the method introduced in this paper in a variety |
tasks.
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PCF, per category feature importand@], technique com-  An additional limitation of Eq. (1) is that the use of the
putes feature relevance based on conditional probabilities. Thisclidean distance, while simple computationally, implies tha
method estimates the conditional probabilie | f) for feature the input space is isotropic or homogeneous. However, the a
f in every category and uses it as a weight foin category sumption for isotropy is often invalid and generally undesirable
c. PCF assigns large weights to features having high correlationmany practical applications. Figure 1 illustrates a case i
with the class. Clearly, feature importance as such is nonlogadint. For quenya, the preferred direction along which to search
and therefore, insensitive to query locations. In addition, thek® similar samples is th¥ axis. That is, the search space in
global averaging correlation techniques do not work well athe vicinity of the query should be elongated alongYhdirec-
tasks such as the XOR problem shown in Fig. 1. tion and constricted along the thédirection. Capturing such

Trott and Leng [16] introduce aimteger programmindIP) information, therefore, is of great importance to any retrieva
method for computing feature weights for an interactive retrievatocedure in large database systems. The following sections d
task. In this task query’s feature values are interactively suppliscribe a novel technigue to achieve just that goal.
by the user. The method imposes a fixed ratio between the weight
of the last feature and the sum of the weights of all other featurest. WEIGHTED K-NEAREST NEIGHBOR SEARCH
for training samples. This ratio is then used to generate a set of
linear equations that can be solved using IP to produce featur&impleK-NN search clearly has its limitations as a procedure
weights. While this method could be used for interactive retrievifll content-based image retrieval. The objective of our approac
to emancipate the user from manually adjusting feature weiglfid0 develop aretrieval method that inherits the appealing proy

for weighted similarity computation, its performance is not yedrties of K-NN search, while at the same time overcomes it
known. limitations by capturing the notion of local feature relevance.

3. SIMPLE K-NEAREST NEIGHBOR SEARCH 4.1. Local Feature Relevance

) _ _ ) The retrieval performance for image databases can be che
SimpleK -nearest neighbor search, as an image retrieval pigsie iz by two key factor§irst, for a given query image, the

cedure, returns th& images closest to the query. Obviouslyy o ance of all the features input to the database system m:
this involves the issue of measuring the closeness or similariy; he equal for retrieving similar images. Irrelevant feature:
between two images. The most common measure of similanfiten, 1t retrieval performanc&econgfeature relevance de-

between the two images is the distance between them. If the, s on the location at which the query is made in the featur

Euclidean distance space. Capturing such relevance information is a prerequisite ft
constructing successful retrieval procedures in image databas
We note at the outset that this problem is opposite to typ
ical classification problems based on lazy learning technique
[11], such as nearest-neighbor kernel methods. While the goal
classification is to predict the class label of an input query fron
nearby samples, the goal in retrieval is to find samples havin
the same “class label” as that of the query. Moreover, many laz
x| D(x, X0) < dk . Iearningtechniqgesforclassification Iend_th_emselvesto the I§in

of problems retrieval tasks may face. It is important to realize

wheredy is the Kth order statistic of D(xi, XQ)}EJ andN is that, unlike classification problems, the notion of classes in im

the number of images in the database. The major appeal € databases is a user-centered concept that is dependen

simpleK -NN search methods resides in their ability to produdg® query image. There is no labelling of images in the databas

continuous and overlapping, rather than fixed, neighborhodgnetheless, the “class label” of an image is simply used her

and to use a different neighborhood for each individual query 8§ & vehicle to facilitate the theoretical d(_arlvanon qf our fea:

that all points in the neighborhood are close to the query. ture relevance measure for content-based image ret.neval. A; !
One problem with Eq. (1) is that it does not take into accouﬁha_‘" see later, t_he resulting rele_vance measure and its associa

the influence of the scale of each feature variable in the distat@/ghtings are independent of image labels in the database ar

computation. Changing the scale of a feature dimension in difus; fit our goals nicely here.

ferent amounts alters the overall contribution of that dimension

in the distance computation, hence its influence in the nearest

neighbors retrieved. This is usually considered undesirable. On&Ve begin this section by introducing some classification con

way to overcome this is to rescale each feature dimension so tbepts essential to our probabilistic derivation.

the scales of all feature dimensions are the same after rescalindn a two class (10) classification problem, the class label

thereby causing them to contribute equally to the distance cgle {0, 1} for queryx is treated as a random variable from a

culation in Eq. (2). distribution with the probabilitiegPr(1| x), Pr(0| x)} [6]. We

D(x,y) = (1)

is used as the measure of similarity, then khelosest images
to the queryxq are computed according to

4.2. Local Relevance Measure
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then have is the largest error one makes in predictifigat z. That is,
f(2) — O is the error incurred when one predidt&) to be zero
f(X)=Pr(1|x) =Priy=1|x) = E(y | X). (2) (zisnotin class one), but in fadt(z) is in class one with prob-

ability 1. On the other hand,
To predicty atx, f(x)isfirstestimated from a set of training data
using techniques based on regression, such as the least-squares f(2)— E[f | x = 2]
estimaté Decision tree methods, neural networks, and nearest-

neighbor kernel methods are examples of using this regression. . . or one makes by predicting the probability béing in

paradigm to the classification problem. The Bayes classifier ¢ Nss one a€[ f | x — 7], conditioned on featurs; taking the
then be applied to achieve optimal classification performanceﬁn T ! 9

image retrieval, however, the “class label”ois known, which valuez. Then

is 1 in terms of the notation given above. All that is required is

to exploit the differential relevance of input features for image [(f(2) = 0) = (f(2) — E[f | x =2])] = E[f | xi =2] (6)

retrieval. Consider the least-squares estimateffod). In the

absence of values for any variable assignments, it is simply represents a reduction in error between the two predictions. \
can now define a measure of feature relevance for quasy

E[f] = f £ () p(x) dx. 3)
@ = E[f [ x = 2. @)

That is, the optimal prediction (in the least-squares sense) for . ) . )
is its average value. Now given only theis known at dimension That is, featureg; is more relevant for query if it contributes

X = z. The least-squares estimate becomes more to the reduction in prediction error (6).
The relative relevance, as a weighting scheme, can then

el =2 = [ et =aax @ T

q
Here p(x | x; = z) is the conditional density of the other input wi(2) = (ri(Z))t/ Z(n(Z))t, (8)
variables defined as =1

wheret =1, 2, giving rise to linear and quadratic weightings,
respectively. In this paper we propose the exponential weightir

pX | X =2) = POYS(K — 2) / [ pwists 2 ©

scheme
whereé(x — 2) is the Dirac delta function having the properties
q
S —2) =0 ifxsz @ =@/ Yeern@.  ©
1=1
and , - :
whereT is a parameter that can be chosen to maximize (min
/"O S(x — 2)dx = 1 mize) the influence af, onw;. WhenT = 0 we havew; =1/q,
oo - thereby ignoring any difference between this. On the other
hand, whenT is large a change in will be exponentially re-
Itis evident that flected inw; . In this casey; is said to follow the Boltzmann dis-
tribution. The exponential weighting is more sensitive to change
O<E[fIx=2=<1 in local feature relevance (7) and gives rise to better performan

o __improvement, as we shall see later.
Furthermore, Eq. (4) shows the predictive strength (probability) |t js clear from (8) and (9) that

once the value of just one of the input featuxess known.

Letz be the query. Sincé(z) =1 (recall that query has the
same class label (class one) as the positive images), it follows
that

O0<wi(2 <1,

wherew; (z) = 0 indicates that knowing; atz does not to help

f(z2)—0 predict the query. On the other hang(z) = 1 states that having
the knowledge ok; atz is sufficient to predict the query. Values
in between show the degrees of relevance thatxerts atz.

2 Note that one can also use techniques based on density estimation to cinfeflects the influence of feature on the variation off (x)
pute f (x). at query locatiore. Thus, (8) and (9) can be used as weight:



154 PENG, BHANU, AND QING

f(% Y f(%2Y

111011111011111111110111111101 z —0000010600000010000100000000000

a
|

X X
(a) (b)

FIG. 3. (a) LargeE[f | xo =2] implies that the subspace spannedXyat z is likely to contain samples having the same class label as the query. (b) Sm:
E[ f | x2 =Z] indicates that the subspace is unlikely to have samples similar to the query.

associated with features for weighted similarity computation Euclidean distance (10), where weights along feature dimer
sions are inversely proportional to the variance (denseness) alo
that dimension. That is, Eqgs. (4) and (8) capture the notion ¢

q
D(x,y) = Z wi(Xi — i)2 (10) variable scaling in that they rescale each input feature so th
i=1 the contribution of all the features to the distance computatio

is “equal.”

Itcan be shown that (10) isindeed a metric. These weights enabl&Ve have so far only considered estimating feature relevanc
the similarity computation to elongate less important featuegong each individual dimension one at a time. However, ther
dimensions and, atthe same time, to constrict the mostinfluentigé situations where feature relevance can only be captured |
ones. Note that the techniquegisery-basetbecause weightings examining several feature variables simultaneously. That is, fe:
depend on the query [2]. ture variables are not independent, and there is a degree of c
A justification for (7) and, hence, (8) and (9), goes like thigelation among them. There is no doubt that such a capability |
Supposethatthe value Bf f | x; = Z] (4) is large, whichimplies highly desirable in many database applications. However, it i
alarge weight along dimensioq. This, in turn, penalizes points clear that, in the absence of any other information, determinin
alongx; that are moving away froma Now E[ f | x; = z] canbe which feature(s) should be examined to estimate local relevanc
large only if the subspace spanned by the other input dimensiaiails additional complexities to feature relevance computatiol
atx; = zlikely contains samples coming from class 1, assumingzurthermore, it is unclear as to how much gain one can expe:
uniform distribution. This scenario is illustrated in Fig. 3a. Thewhen there are insufficient ddtéor conducting such joint esti-
alarge weight assignedfpbased on (8) says that moving awaynation. One way to decorrelate association among the featur
from the subspace, hence from the data in class 1, is a bad thigigo rotate the feature dimensions so that they coincide witl
to do. Similarly, a small value oE[ f | x; =z], hence a small the eigenvectors of a sample covariance matrix. Note that, eve
weight, indicates that in the vicinity of atz one is unlikely to without such a transformation to the eigen space, the techniqt
find samples similar to the query, as shown in Fig. 3b. Thereforsscribed here can be readily extended to estimating local rel
in this situation in order to find samples resembling the quesyance, conditioned on multiple feature variables simultaneousl

one must look farther away from We do not address this issue further in the rest of this paper.
Another way to look at (4) is that the conditional expecta-
tion can be considered as a “measure” indicating the denseness 5. ESTIMATION OF RELEVANCE

(sparseness) of data points having the same label as the query
in a small neighborhood of feature at z. When data are dense In order to estimate (8) and (9), one must first compute (7)
(large conditional expectation) along featureatz, itis givena The retrieved images with relevance feedback from the user cz
large weight. Likewise, sparseness (small conditional expectse used as training data to obtain estimates for (7), hence, (
tion) results in a smaller weight. This is in direct analogy to thand (9). Let
use of the quadratic distance
{Xj. yj )t
2 Ty —1
Iy =xI" =0y =X 570 =), (1) be the training data. Her&; denotes the feature vector
whereX is the covariance matrix, assuming a Gaussian distri-
bution. If X is diagonal, (11) gives rise to a (squared) weighted 2 Recall that there is a very limited number of returns at each retrievel.
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representingj th retrieved image, any; is either 1 (relevant)

or O (irrelevant) marked by the user as the class label associated
with x;. To computeE[ f | x; = Z], recall that f (x) = E[y | X].
Thus, it follows that

E[f |x =2 =E[y|x =2

However, since there may not be any datg at z, the data from
the vicinity of x; atzare used to estimate]y | X; = z], a strategy
suggested in [6]. Therefore, (7) can be estimated according to

K K
Ely % =2=)_y1(xi—2 < Q)/Zl(lxji -27| < Q),
=t =t (12)
where 1() is an indicator function. That is, J(returns 1 if its
argument s true, and 0 otherwisecan be chosen so that ther%IG. 5. A simple two-class problem with a uniform distribution. The square

are sufficient data for the estimation of (4). In this pajeis  (as indicated by an arrow) shows the query.
chosen such that

K tion. The number of data points for both classes is roughly tt
Z 1(xji —z|=Q) = C, (13) same. The red square, located at (1, 0.1), represents the qu
=1 Figure 6a shows the 200 nearest neighbors (red squares) of
whereC < K is a constant. It represents a trade-off betwed!€ry found by the unweighted-NN method (1). The resulting
shape of the neighborhood is circular, as expected. In contra

bias and variance. In addition, (12) can be computed within -
subregion, thus making the relevance measure more local. Npi@: 60 shows the 200 nearest neighbors of the query, compul

that it is possible to extend this technique to multiple class sit /Y. the technique described above. That is, the retrievals (wi
tions where the user can grade the retrieved images. Our retridgivance feedback) shown in Fig. 6a are us<led to compute
and feature relevance computation algorithm is summarized@fd: hence, (9) with estimated new weights:=0.134 and

Fig. 4, whereprecisiondenotes the average retrieval precisioH’2=0-866- As a TESU“! the new (elliptical) _neighborhood i
(18). elongated along the horizontal axis (the less important one) a

The bulk of the computational expense involved in the fegonstricted along the vertical axis (the more important one). Tt

ture relevance estimation algorithm shown in Fig. 4 is consumgect is that there is a dramatic increase in the retrieved near
by the K -nearest neighbor search, while the relevance estinfig/ghPors that are similar to the query. _

tion is quite efficient. This is particularly pronounced when the 'NiS €xample demonstrates that even a simple problem

image database is large. In practice, however, the amount/¥§}ich the class boundary ideally separates two classes can b
computation associated with the nearest neighbor search EJhTom the feature relevance learning technique just describe
be significantly reduced by partitioning or indexing the imaggSPecially when the query approaches the class boundary. I
database in such a way that the nearest neighbor search catfportant to note that for a given distance metric the shape

localized within a given partition. This issue, however, is beyorfii "€ighborhood is fixed, independent of query locations. Fu
the scope of this paper. thermore, any distance calculation with equal contribution fror

We use a simple two-class problem, shown in Fig. 5, to ilugach feature variable will always produce spherical neighbc

trate the feature relevance computation process. In this probld32ds: Only by capturing the relevant contribution of the featur

the data for both classes are generated from a uniform distriy@/1@Ples can a desired neighborhood be realized that is hig!

customized to query locations.

Experimental validation. We now present an experimental

1. Let ¢ be current query; initialize weight vector w to {1/g}{. validation of the feature relevance computation algorithm de

2. Compute K nearest images using w. scribed above. In this experiment, the problem is designed

3. User marks the K images as positive or negative. such a way that all feature dimensions have the same global r

4. While precision < 6 Do evance. However, they have unequal local differential relevanc
(a) Tset « {marked K images}. depending on query locations. There gre 5 feature dimen-
(b) Update w from Eqs. (12) and (9) using training data in T'set. sions and two classes. The data are generated from a norr
(c) Compute K nearest images using w. distributionx ~ N(0, X), whereX is given by

(d) User marks the K images as positive or negative.

; 2
FIG. 4. The probabilistic feature relevance learning (PFRL) Algorithm. Y= d|ag{0-75 }(1]~
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FIG. 6. Effect of feature relevance on retrieval: (a) circular neighborhood (no learning); (b) elliptical neighborhood (after learning).

The classes are defined by unweighted Euclidean distance metric (1) is the correct on
to use.

5 It is interesting to note that the exponential weighting (9)

inz <23 = classQ otherwise= class 1 seems to produce the best performance on all queries. This

i=1 largely due to its sensitivity to changes in conditional expec:

) ) ) tation (7). Furthermore, it can be seen from Fig. 7 that ther
Thatis, class 0 is completely surrounded by class 1 in the feat?gean inherent trade-off between sensitivity and performance

space. There are 10,000 data points total in the database Wihie nymber of relevant features increases, the exponent
roughly an e_qual number of data points in each class. weighting managed to capture the subtle difference between tt
. Four queries from class 1 are generated such that some feajlfg ant and irrelevant features, as evidenced by sharp increa:s
dimensions are more relevant than others. The four represefjigzieval precision. However, a dramatic increase in retrieva
tive queries are shown in Table 1. Clearly, featues the most o qision increases positive (relevant) images in the resulting r
dlscrlmlnatmgd!men5|o_nf0_rqueq4. Similarly, features, and trievals, which in turn makes it highly likely, based on (12), that
xs are the most influential dimensions for quegyand features ooy gimension becomes relevant (7) at next iteration, theret
X3, X4, and %5, for queryqs. For queryqy all the dimensions lowering retrieval performance. This is particularly true when
exc_eptxl are important. . more features are relevant. This type of sensitivity, however, ca
Figure 7 shows the performance of the three weighting, , pge advantage in practical applications, for it reduces tt

schemes (exponential (9), quadratic and linear (8)) on thege, nt of interaction required between the user and the ima
queries. The performance is measured using the retrieval W&ieval process

cision (the number of positive (class 1) retrievals divided by the gy, e g jiiustrates weight changes as a function of iteration

total number of retrievals) as a function of time. Note that at t sed on the quadratic weighting (8). Here two horizontal axe
first iteration, the retrieval precision is produced by unweighted o sent input features and iterations, respectively, while th
K-NN search (1). All three weightings demonstrate significaghica| axis represents the magnitude of the weights. It can se
performance improvement over the simple unweightetIN 54 oy 4|l the queries the weights associated with the relevar
method on all the queries. However, the improvement is Mqghyres are increased and the weights associated with the irr
pronounced when the number of the re_levant features is Sm@Uant ones are decreased after learning has taken place. Thi
As the number of the relevant features increases, our technigue s show convincingly that our method can indeed captur
reduces to the unweighteld-NN method as expected. Thislocal feature relevance

is correct since when all the features are equally relevant thgys gesire that the algorithm be robust in that it produce:

similar results with similar queries, where by similar queries we
TABLE 1 mean those queries having the same number of relevant featur
In order to see if the algorithm can achieve performance robus

Four Representative Queries . . oy
ness, four additional query points are randomly generated withi

Query X1 X2 X3 X4 Xs a neighborhood of each representative query. Figure 9 shov
the performance of the quadratic weighting on these queries.

Q 0.01 0.005 0.02 0.005 1531 can be seen clearly that the algorithm is indeed capable of pr
22 g'gé 8'82 g.g;s é'ggl 3'3881 ducing similar results and capturing corresponding feature(s) ¢
G 0.02 0.76 0.76 0.76 076 relevantfor the given similar queries. Moreover, additional ex-

periments were carried out to determine how the siz& arf
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FIG.7. Performance of exponential, quadratic, and linear weightings on four queries.

(12) will affect the performance of the proposed technique. Wehere meapis the mean value of thkth feature dimension.
omit the details of the experiments here, except to state that dinen
method can tolerate a wide range of valuestor
ICli = (l0g,(0i1 + 2), ..., l0gy(oik + 2), ..., l0g,(0iq + 2)),
6. EMPIRICAL RESULTS (15)

In the following we compare two competing retrieval methods . . . .
9 b peting ereojk IS the standard deviation of thkéh feature dimension

using both simulated and real data. The simulated data experi-" =~ . . o
ments allow us to reliably predict the strengths and Iimitatior\% Cg,'.' F'r&?g/j .the normalized feature vector is simply a produc
QCli an i

of algorithms because the precise nature of the problem the

gorithms are facing is known. -

Fi = C|i X |C|i. (16)
MeTHop 1. Probabilistic feature relevance learning (PFRL)

described in Fig. 4, coupled with the exponential weighting , represents the current query, RFM computes a new que

scheme (9). according to

MetHop2. Therelevance feedback method (RFM) described
in [15]. RFM requires that features be normalized according to

1 1
the following. Let X=X+ ﬂ(n Z yi> -y (N_., Z Yi), 17)

" yieN Yi €Nir

F=(f,..., fik, ..., fi . .
= (f 'k a) whereN; represents the set of relevant retrievals qdirrel-

be the feature vector representing ttteimage in the database.€vant ones.
Fi is first transformed into Note that there is a third method, the unweight€éeNN
‘ ; ; method, that is being compared against implicitly. The firs
Cl = < L ) (14) retrieval by PRFL is based on the unweight¢eNN method.
mean mear mear Also, in all the experiments, the performance is measured usi
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the average retrieval precision ProsLEM 2 (Four-dimensional spheres with six noise features)
. ) This problem is taken from [7]. There are 10 features and tw

precision= Positive Re-trlevalsx 100% (18) Classesin this problem. The last six features are noise variable

Total Retrievals with standard Gaussian distributions, independent of each oth

) ) and the class membership. The data for both classes are gen

6.1. Experiments on Simulated Data ated from a standard normal distribution. The data for class or

For all the experiments reported in this subsection, the featuftye the property that the radius, computed from the first fou
are first normalized over the entire data according to (14), (1i§ptures, is greater than 3 while the data for class two do nc
and (16) for REM, while no normalization takes place for PFRINave such restriction. Class one basically surrounds class two
There are 500 data in each database. the subspace spanned by the first four features.

6.1.1. The Problems ProsLem 3 (Ten-dimensional spheres). Like Problem 3,
B there are 10 features and two classes. All 10 features are ind
ProeLem 1 (Two-dimensional XOR). This is the problempendent standard normal. All data in class one have the proper
shown in Fig. 1. Two classes are distributed in diagonal quatttat their radius is greater than 3 and less than 6, while da
rants. The dat& [0, 2] for both classes are generated from & the second class do not have such restrictions. There are
uniform distribution. While the features are rescaled to lie baoise variables in this problem. Discriminating information oc-
tween 0 and 1 for PRFL, they are normalized according to (14)rs along only one direction in the feature space. Further, thi
(15), and (16) for RFM. direction changes when moving across the input space and eve
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feature becomes important at some point in the space. Again tthisd column in Table 2 shows the average retrieval precisic
problem is taken from [7]. obtained by each method without any relevance feedback (O r

ProeLem 4 (Ten-dimensional ellipsoidals). There are 10 fed=0r PRFL, this average retrieval precision is obtained by the u
tures and two classes in this problem. All of the data are gefeightedK-NN method. The fourth column shows the averag

erated according to a standard normal distribution. Two clasgg¥ieval precision computed after learning has taken place on
are defined by (1 rf). That is, relevance feedback obtained from the previot

retrieval is used to compute a new query in case of RFM ¢
probabilistic local feature relevance, hence new weighting, i

10
2 . .
Z % /I =25=class] otherwises class 2 case of PFRL, respectively. The last column shows the relati

i=1
Allfeatures are relevantin this problem, butthe higher numbered
features are more so. This problem is taken from [6]. TABLE 2

ProsLem 5 (Eleven-dimensional hypercube with 10 noise fea- Average Retrieval Precision for Simulated Data

tures). There are 11 features and two classes in this probleg},iem Method 0 (rf) 1) Improvement
All 11 features are uniformly distributed betweerl and 1,
independent of each other. The data for class one have the prepblem 1 PFRL 96.50 97.75 1.98
erty:—1 < x; < —0.50r0< x; < 0.5, whereas, the data for class RFM 66.49 67.38 0.89
two have the restriction that0.5<x; <0or05<x; <1.That Problem2 PFRL 65.37 83.42 38.24
is, the two classes separate each other. The class membership is RFM 57.37 72.57 32.42
a simple function ok; only, and the last 10 features contain nd’roblem 3 PFRL 59.80 76.59 53.22
additional information. They serve as noise variables. RFM 52.23 59.20 16.32
Problem 4 PFRL 61.23 80.80 52.70
6.1.2. Results RFM 54.93 66.86 24.86
. - . Problem 5 PFRL 59.82 88.02 53.47
Table 2 shows the average retrieval precisions obtained by the REM 57.14 75.46 41.87

two competing methods for the problems described above. The
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performance improvement by the two methods, where the avprevement in the average retrieval precision. This result is col
age performance improvement (API) is computed according toborated by the experiments performed in [15]. As pointed ou
in [15], this is considered highly desirable, since acceptable re

API| = sults can be achieved with the minimum number of feedbac
Positive Retrievals(+ 1) — Positive Retrievals() cycles. As a comparison, however, we performed experimen

— - x100% ; . ;
Positive Retrievals() in which RFM was allowed to receive the second relevance feec

(19) back and recompute a new query vector. The average retriev
precisions for the five problems are 67.91, 78.16, 64.72, 70.6(
averaged over all queries, where Positive Retrieshlsfpre- and 83.44, respectively. The results show that given twice th
sents the positive retrievals at thth iteration. amount of computation, RFM still could not achieve the level of
There are two procedural parametd&rg9) andC (13)inputto performance obtained by that of PFRL on the problems exarr
the PFRL algorithm. The values of the parameters used to obtéiad here.
the results reported in Table 2 were determined experimentallylt may be argued that the problems chosen here are not pz
These values are (15, 16), (14, 16), (15, 10), (10, 8), and (22 t8ylarly in favor of RFM. Most of the problems are constructed
for problems 1, 2, 3, 4, and 5, respectively. Similarly, we expeso that one class is surrounded by another in the feature spa
imented with the parametera,(8, andy) [15] input to RFM, This type of situation presents most difficulties to RFM. How-
and the best performance results found in those experimentsewer, it also poses considerable challenges to the PRFL methc
reported in Table 2. These values are (1, 2, 1), (2, 2, 3), (2, 4, Djfferential relevance information occurs along one direction.
(1,4, 2),and (2, 2, 4) for problems 1, 2, 3, 4, and 5, respectivelurther, this direction changes when one moves across the fe
Note that these experiments are by no means exhaustive. ture space. In general, such relevance information is difficult fo
It can be seen from Table 2 that both methods show perfény method to capture. And it seems likely that this type of sit
mance improvement across all the tasks. However, the margirion would occur often in the real world. Thus, it is our view
of improvement achieved by PRFL are much greater than thihat these problems provide a reasonable basis for comparil
obtained by RFM. Furthermore, PRFL did consistently bettéfte two competing methods.
than RFM. One thing to notice is that RFM performed poorly
on the XOR problem (Problem 1). This can be attributed to the

nonmetric similarity function employed by RFM [15], 6.2. Experiments on Real Data
. In order to compare the two competing methods more objec
Sim(x, y) = Xy (20) tively, original features are normalized in three different ways
’ XNyl For the probabilistic feature learning method described above

the normalization is carried out along each feature dimensio
wherex andy are feature vectors, t denotes transpose, ander the entire data set in such a way that the normalized featu
II-]I represents thé., norm. This function is invariant to ro- values lie between 0 and 1. We call this normalization proces
tation and dilation, but it is variant to translation and generatale This process does not in any way provide inductive bias ir
linear transformation [4]. Should we normalize the features $avor of the learning method. It simply removes some of artifacts
as to have zero mean and unit variance, RFM would have dtse to different scales of variables that are generally considere
tained the same performance level for problem 1 as that bgdesirable in the absence of any additional information. Thi:
PRFL. is particularly true for retrieval procedures whose distance corr
Animportant observation one can make from Table 2 is that @llitation is based on the Euclidean metric (1).
the problems, except the first one, do not favor RFM regardless=or RFM, the features are normalized according to (14), (15)
of normalization procedures employed. It is not hard to shaand (16). This normalization process attempts to explicitly cap
that, in these problems, a line in the input space along a quéuye feature importance within a feature vector as well as acros
vector will almost always intercept both classes. In this caddifferent feature vectors over the entire data collection, thereb
the mere rotation of the query vector, which is carried out bgnabling RFM to take advantage of some of the well-known re
RFM for computing a new query vector using relevance feedults from information retrieval. Following [15], we denote this
back (Eg. 17), does not necessarily move the query closer to tteemalization procedure ktyf x idf.
relevant class and away from the irrelevant one. On the otheMhile the two competing methods perform image retrieval or
hand, in PFRL capturing local feature relevance is sufficient the same database, they use different input representations.
produce a neighborhood whose shape is tailored to the particudeder for the two methods to receive exactly the same inputs, tt
query so that the number of the retrievals similar to the queryfisatures are normalized so that each dimension will have zel
increased, as evidenced by the results shown in Table 2. mean and unit variance. And as such, the normalized featur
Note that here we only show results at one iteration after reannot be further altered by (14), (15), and (16). Thus, the twi
ceiving the relevance feedback. The reason is that subsequeathods see exactly the same database and input representat
relevance feedbacks only give rise to minor performance inihis procedure is denoted by 01.



PROBABILISTIC FEATURE RELEVANCE LEARNING 161

6.2.1. The Problems

ProBLem 1. The data in the first problem, from the UCI
repository [12] consist of images that were drawn randoml’
from a database of seven outdoor images. The images we
hand-segmented by the creators of the database to classify e ™
pixel. Each image is a region. There are seven clagsik- |
face sky, foliage cementwindow path, andgrass each having [a)
330instances. Thus, there are total 2310 images in the databe
These images are represented by 19 real-valued attributes t )/ _
are described in Table 3. These features are basically statisti AT 1,‘-,. _\' 3
moments and line counts. For further details, see [12]. ‘rhji'f;_ R

RPN L% | ]
ProeLem 2. The data in the second problem are obtalne"{&: it‘i{»
from MIT Media Lab at ftp://whitechapel.media.mit.edu/pub/ == | Y
VisTex in the same way as in [15]. There are 40 texture image d

that are manually classified into 15 classes. Each of these imag. o (d)

is then cut into 16 nonoverlapping images of 22828. Thus, FIG. 10.
there are total 640 images in the database. Also, the number of

images in each class varies from 16 to 80. The images in this

database are represented by 16-dimensional feature vectorsnétessary relevance feedback. The average retrieval precisio
use 16 Gabor filters (two scales and four orientations), descritmdnmarized in Table 4. There are four rows under each proble
in the Appendix, for feature extraction. The maan, (21) and in the table. The first two rows indicate the performance of th
the standard deviatios,, (22) of the magnitude of the trans-two methods under the condition that the features are normaliz
form coefficients are used as feature components (23) after besiogas to have zero mean and unit variance. The third row sho
normalized by the standard deviations of the respective featuties results obtained by PFRL, conditioned on the features bei
over the entire set of images in the database. Sample imagessasded to lie between 0 and 1. The fourth row shows RFM'

Sample images from MIT database.

shown in Fig. 10. performance given that the features are normalized according
(14), (15), and (16).
6.2.2. Results The second column in Table 4 shows the average retrie\

precision obtained by each method without any relevance fee

For both problems, each image in the database is selectegygsk. The third column shows the average retrieval precisic

a query and top 20 nearest neighbors are returned that providenputed after learning has taken place. That s, relevance fes
back obtained from the previous retrieval is used to compute

TABLE 3 new query in case of RFM, or to estimate local feature rele
Feature Information vance, hence a new weighting, in case of PFRL, respective
Feature Description

1 Region-centroid-col Center pixel column of the region TABLE 4

2 Region-centroid-row  Center pixel row of the region Average Retrieval Precision for Real Data

3 Region-pixel-count Number of pixels in a region

4 Short-line-density-5 Line count, low contrasts UCI database

5 Short-line-density-2 Line count, high contras§

6 Vedge-mean Contrast of horizontally adjacent pixels Method 0 (rf) 1 (rf) Improvement

7 Vedge-sd See 6

8 Hedge-mean Contrast of vertically adjacent pixels PFRL (01) 92.10 95.64 6.82

9 Hedge-sd See 8 RFM (01) 91.25 95.12 9.75
10 lintensity-mean (R-G+B)/3 PFRL (scalg 92.08 96.05 7.66
11 Rawred-mean Average of the R value RFM (tf xidf) 86.39 91.95 15.33
12 Rawblue-mean Average of the B value MIT database
13 Rawgreen-mean Average of the G value
14 Exred-mean (2R (G+B)) Method 0 (rf) 1 (rf) Improvement
15 Exblue-mean (2B- (G+R))
16 Exgreen-mean (26 (R+B)) PFRL (01) 77.05 84.02 14.37
17 Value-mean 3D nonlinear transformation of RGB RFM (01) 81.79 89.63 17.76
18 Saturation-mean See 17 PFRL (scalg 78.27 84.44 12.70

19 Hue-mean See 17 RFM (tf xidf) 83.74 90.23 13.53
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The last column shows relative performance improvement l, respectively, in all the experiments reported in this sectior
the two methods. It can be seen from Table 4 that both methdigilarly, we experimented with the parametexs g, andy)
demonstrate significant performance improvement across ft8] input to RFM, and the best performance results found ir
tasks. In general, PFRL seems to slightly outperform RFM dhose experiments are reported in Table 4. For the UCI dat:
the UCl data, whereas RFM achieves better results with the Mifiese values are (1, 3, 2) for 01 normalization and (1, 4, 3) fo
data. The two competing methods seem compatible, at least(fdr x id f). Likewise, for the MIT data these values are (1, 2,
the problem experiments here. Furthermore, various normalidg-for 01 normalization and (1, 4, 2) fotf(x idf), respec-
tion techniques do not seem to have a significant impact on tiely.
overall ability of each method. Finally, similar to the simulated Figure 11 shows a particular retrieval result obtained by PFRI
data experiments, when RFM is allowed to update the qudrgm the MIT image database with no learning; that is, each di
after receiving the second relevance feedback, there is a sligtension is weighted equally in the distance computation (10;
improvement in the retrieval results (UCI data: 96.63 (01) amdhere a retrieval precision of 25 is achieved. Note that Fig. 11
93.94 (f xidf); MIT data: 91.81 (01) and 91.88f( x idf)). represents the query image. In contrast, Fig. 12 shows the r
However, this is at the expense of increased computation, whicieval results after learning has taken place, where the resul
can be prohibitive when the database is very large. in Fig. 11 provide relevance feedback. In this case, a retrieve
Note thatthe procedural parameterg®) andC (13)) inputto precision of 95 is achieved. This illustrates that capturing loca
PFRL were determined empirically, and they were set to 15 afehture relevance indeed helps to improve retrieval performanc

(p) (a) (t)

FIG. 11. Retrieval results without learning, where (a) represents the query image. Retrieval precision: 0.25.

(f) (8)
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(t)

FIG. 12. Retrieval results with learning, where (a) indicates the query image. Retrieval precision: 95.

7. CONCLUSIONS A potential extension to the technique described in this pap
is to consider additional derived variables (features) for loc:
This paper presents a novel probabilistic feature relevanedevance estimate, thereby contributing to the distance calcu
learning technique for efficient content-based image retrieviibn. The derived features are functions, such as linear functior
The experimental results using both simulated and real data shafwthe original features. When the derived features are mo
convincingly that learning feature relevance based on user$ormative, huge gains may be expected. On the other hand
feedback can indeed improve retrieval performance of an ititey are not informative enough, they may cause retrieval pe
age database system. Furthermore, since the relevance estifioaiteance to degrade since they add to the dimensionality cou
is local in nature, the resulting retrieval, in terms of the shagée challenge is to be able to have a mechanism that compu
of the neighborhood, is highly adaptive and customized to tsach informative derived features efficiently.
query location.
Our retrieval technique learns local feature relevance for eacAPPENDIX: GABOR WAVELET REPRESENTATION
given query. However, itis possible that the knowledge acquired
during one retrieval can be gradually collected and it can be-We use Gabor wavelets [9, 17] to extract texture features.
come part of the database itself through continuous learnifigo-dimensional Gabor functiog(x, y) can be written as
This knowledge can be used in conjunction with case-based

2 2
learning [1, 2, 14] to achieve generalization in future retrievalsg(x, y) = ( 1 ) exp e + y +27jWx | .
in order to further optimize the performance of the system. 21 oxay 2\o? 03
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Using the above formula as the mother function, a set of self-
similar filters are derived through the generating function

1.

Imn(X, y) =a""g(x', y)
and

X' =a ™(xcosd + ysing), y =a ™(—xsind + ycosh), 4

wherea>1,0=n7/K,n=0,1,...,K—-1,andn=0,1,..., 5.
S—1. K is the total number of orientations aglis the total
number of scales. 6.
Given an imagd (X, y), its Gabor wavelet transform is then
defined £
Winn(X, y) = // I (X1, Y1) Omn(X — X1, Y — Y1) dx d i, 8.

where* indicates the complex conjugate. We then compute

o = / / Winn(x, y)I dx dy (21)

11.
12.

and

Omn = \///(|Wmn(xa Y — ,umn)de dy. (22)

14.

In our systemS=2 andK =4, thereby generating a 16-dimen-
sional feature vector of the form for each texture image

f = [1ooo00- - - 16016]- (23)
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