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ABSTRACT 

 

In this paper, we present an approach for 3D phase-contrast 

microscopy using focus measure features.  By using 

fluorescence data from the same location as the phase 

contrast data, we can train supervised regression algorithms 

to compute a depth map indicating the height of objects in 

imaged volume.  From these depth maps, a 3D reconstruction 

of phase contrast images can be generated.  This paper has 

shown the ability to 3D reconstruct phase contrast images 

using a variance metric inspired by all-in-focus methods.  The 

proposed method has been used on A549 lung epithelial cells. 

 

Index Terms— 3D Reconstruction, Phase Contrast 

Images, Focus Measures, Fluorescence, Regression 

 

1. INTRODUCTION 

 

Phase contrast microscopy is a contrast-enhancing optical 

imaging modality.  It is commonly used to produce high-

contrast images of specimens, such as cells, microorganisms, 

tissue, and other transparent objects.  Phase contrast imaging 

has many distinct advantages over other imaging methods.  

Objects collected with phase contrast are more visible than 

traditional bright field microscopy, even displaying internal 

structures that were previously invisible.  Additionally, living 

specimens do not have to be killed, fixed, or stained and can 

be observed during ongoing biological processes.   Lastly, 

phase contrast is not orientation dependent like differential 

interference contrast (DIC) microscopy and can be imaged at 

angle without producing artifacts. Traditionally, phase 

contrast has been constrained to 2D images.  However, as 

samples become thicker the microscope’s depth-of-field is 

not sufficient to image the entire object [1].  Because of this, 

3D image is important to fully analyze the object of interest.   

 

3D construction can be useful for visualizing the 

internal compartments of cells and cell shape. Additionally, 

3D phase contrast reconstruction can be used to identify 

individual cells in tightly packed colonies such as pluripotent 

stem cells, and cells which grow as tightly-packed 

monolayers such as lung cells. A single cell culture may 

contain multiple types of objects such as cell substructures, 

debris, media and differentiated cells.  Each of these may 

appear differently in an image and can greatly benefit from 

height and shape information provided by 3D imaging. 

 

In this paper, we propose a novel machine learning 

based approach for three-dimensional rendering of cells in 

culture.  Unlike previous methods, our method can be used 

with any microscopy system that has phase contrast and 

fluorescence.  After training the machine learning algorithms, 

the fluorescence imaging is no longer necessary and can be 

used to generate 3D phase contrast volumes using only a z-

stack of phase contrast images. 

 

2. RELATED WORK AND CONTRIBUTION 

 

Traditionally, 3D microscopy has been acquired using 

confocal microscopy or super-resolution microscopy because 

of their ability to remove out of focus light rays [2].  

However, there are very few systems that provide both phase 

contrast and confocal/super-resolution images at the same 

time. Because of this we have decided to work on a system 

that has both phase contrast and fluorescent imaging.  In 

fluorescent imaging, fluorescent stains are introduced to the 

imaging sample.  By marking the contour of an object with 

stains, we can obtain an accurate depth ground truth.   

 

The proposed method assumes that different parts of 

an object will be most in focus at different heights.  Because 

of this, it is useful to relate our method to all-in-focus 

algorithms. Many of these algorithms begin by acquiring 

image focal stacks that are focused at different distances [3]. 

These methods will either use defocus or in-focus parameter 

to select the focal distance in which a pixel is most in focus 

[4]. By using an in-focus parameter, a depth map may be 

generated and can be used to 3D render the object of interest.  

In addition, these methods may be used to produce all-in-

focus microscopy images. Other potential applications can 

include finding and maintaining autofocus during time-lapse 

imaging. 

 

To the best of our knowledge 3D phase contrast has 

not been achieved without specialized equipment.  Chen et al. 

[5] have produced a 3D reconstruction of polystyrene beads, 

however they constructed a custom LED array and axial 

motion stage to image the sample at different angles.  The 



proposed method does not require the addition of specialized 

hardware to existing imaging systems. 

 

3. THE PROPOSED METHOD 

 

The proposed method is shown in Figure 1.  The system 

extracts variance features from phase contrast image volumes 

and estimates a depth value using supervised regression.  

Fluorescent images are used to generate a ground truth and to 

provide labels to the phase contrast data.  The regressed 

values are then reshaped into a depth map which is used for 

3D reconstruction. 

 

5.1. Ground Truth Generation 

 

During data collection, both phase contrast and fluorescent 

images of size r x c were taken for various cell cultures.  For 

each region of interest, an expert biologist focused the 

microscope, so that the center plane is the most in focus.  

From this plane, h planes above and below are collected 

across the z-axis of the microscope.  Every plane is separated 

by a step size of s micrometers.  In total, H = 2h+1 planes are 

collected for each cell in each imaging modality.  Each image 

represents a different focal distance.  Phase contrast and 

fluorescent images collected at various heights are shown in 

Figure 2. 

 

To generate a ground truth for the phase contrast 3D 

reconstruction, a fluorescent 3D reconstruction is generated 

on the same volume.  Usually, these images are collected with 

a microscope that removes out of focused light such as 

confocal or structured illumination microscopy (SIM).  Since 

there are few systems that can collect these types of images 

with phase, we must compute a depth map while taking blur 

into account. 

 

Our method for generating ground truth from a 

volume of fluorescence images is to generate a depth map 

representing the height of each pixel.  Various in-focus 

measures can be used to estimate the height.  Yao et al. [6] 

have shown that variance is a strong metric to compute an all-

in-focus image.  Our method begins by generating a variance 

volume V by convolving a variance filter through each voxel.  

As we are only interested in the most in-focused image, the 

filter is an m x m 2D filter.  We have found m=5 to work the 

best empirically.   

 

A depth map D is generated from the variance volume 

by the following algorithm. 

 

1. Initialize D as a zeros matrix with the same size as 

the input images. 

2. Loop across i and j for all pixels of D. 

3. Compute the maximum value of V at (i,j) across the 

z-axis. 

4. The value of D(i,j) is the index of the maximum 

value across the z-axis.  

 

As there may be some errors in the depth map, a median filter 

is applied to smooth the values. 

 

Fig. 1: System overview for phase contrast 3D Reconstruction 

 
Fig. 1: System overview for phase contrast 3D Reconstruction 

 



 

3.2. Input Features 

 

Our proposed method for phase contrast 3D reconstruction is 

to generate a depth map based on supervised regression.  To 

generate the features, we begin by computing a variance 

volume Vp using the same method to generate our ground 

truth.  However, instead of using the fluorescence images, the 

phase contrast images are used.  To reduce the effect of 

background information in our regression, we remove the 

background from the image before computing Vp.  This is 

done by using the edge based segmentation method used in 

[7] on every image in the stack. Once objects are segmented 

anything below a specific size is considered a part of the 

background and set to zero. 

 

After acquiring Vp, data samples are extracted by 

examining variance values along the z-axis.  For a volume of 

size r x c x H, there will be r*c samples of size H x 1.  A label 

L(i,j) is also assigned to each voxel based on corresponding 

value on the depth map D(i,j).   

 

3.3 Supervised Learning  

 

Once extracted, the samples will be used to train a regression 

model.  We have tested three different regression models: 

regression trees [8], linear support vector regression [9], least 

squares boosting regression [10]. Each model will take a 

vector of H x 1 inputs and estimate a height value.  After 

estimating a height value for the r*c samples of an image 

volume, these values are reshaped into a depth map Dp of size 

r x c. 

 

3.4 3D Reconstruction from Depth Map 

 

Because the system is imaging only the top of cells, the 

method assumes that every voxel below the top voxel of the 

object is a part of the object. This is a safe assumption for our 

data as we are analyzing in vitro cells on a dish.  Once these 

cells attach to the substrate, the cell lay flat on the surface.  

Using this constraint, a labelled volume L is created from the 

depth map as follows:   

 

𝐿(𝑖, 𝑗, 𝑘) = {
1       𝑖𝑓 𝑘 ≤ 𝐷𝑝(𝑖, 𝑗)

0              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                  (1) 

  

To reduce noise, a 2D median filter is convolved with the 

depth map before being used to create the labelled volume. 

 

4. EXPERIMENTAL RESULTS 

 

5.1. Datasets 

 

All images have a resolution of 800x600 pixels.  To reduce 

processing time, all images were resized to 400x300 by 

subsampling the pixels in the image.  Phase contrast and 

fluorescence 3D images were acquired using the BioStation 

IM (Nikon Instruments, Melville NY) which is a compact cell 

incubator and monitoring system. 99 slices were collected at 

0.3 um spacing. A 20x objective was used to gather individual 

cells and small cell clusters.  All images were of A549 lung 

epithelial cells. 

 

A549 lung epithelial cells (human type II pulmonary 

alveolar adenocarcinoma cells) were obtained from (ATCC 

CCL-185, Manassas, VA, USA) and cultured in Ham’s F-12 

media supplemented with 10% fetal bovine serum (ATCC, 

Rockville, MD). Cells were grown until 80% confluency, at 

which point they were detached using 0.25% trypsin 

EDTA/DPBS. A549 cells were passaged every 2-3 days and 

medium was replenished every other day. Both cells types 

were grown in a 37°C incubator with 90% humidity and 5% 

CO2. 

 

In the A549s, Cyclin D1 (Red) is a marker important 

in cell-cycle and is localized to the nucleus. CD44 is a cancer 

stem cell marker, and was localized to the plasma membrane. 

There was an increase in the Cyclin D1 and CD44 expression 

on the treated A549 lung cancer cells.  Acetylated α -tubulin 

(Green) localized to the cytoplasm. 

 

5.2 Results 

 

Our dataset consisted of 5 cell volumes with 400x300 data 

points each.  A 5-fold cross-validation was performed for 

each regression model by training on 4 cell volumes and 

testing on the last volume.  Figure 3 displays the depth maps 

of ground truth and the 3 regression models.  The figure also 

shows the 3D reconstruction generated by the depth maps. All 

sub images are of the same cell.  

From figure 3, the thickness of the samples is 

overexaggerated.  Since the center plane (z=50) is the most 

in-focus plane, z=1 is not bottom of the cell.  The z=1 plane 

is likely to be below the bottom, which explains the extra 

Fig. 2: Phase contrast and fluorescence images at 

different focal points 



thickness seen in the 3D reconstruction.  There are also errors 

around borders of the cell due to segmentation.  As the 

segmentation sets the background to zero, these boundaries 

form an edge.  These artificial edges cause an increase in the 

variance metric.  LSVM is especially susceptible to this as 

seen in the extreme boundaries in the depth map. 

 

Because the stains in the fluorescence images only 

target specific structures, other objects such as debris are not 

detected.  However, they are still visible in phase contrast.  

One such object can be seen in the bottom of the trees depth 

map. These objects are then detected in the phase 3D 

reconstructions but not the fluorescence. 

 

Table 1 shows the precision and recall results for 

each cell.  Trees and LSBoost performed well on all cells 

except for cell 3.  Cell 3 was an image stack with large dead 

cells which likely affected the precision results.  LSVM was 

very sensitive to boundary conditions, causing it to perform 

very poorly for all cells.  Figure 4 displays the z=50 slice of 

cells 2 to 5. 

 

5. CONCLUSIONS 

 

In this paper, we have developed a 3D reconstruction method 

that can be used on phase contrast images.  By using 

fluorescence data as the ground truth, the system was able to 

train various regression models to compute a depth map.  

From this depth map, a 3D reconstruction can be generated 

which can detect objects not shown in fluorescence.  Unlike 

other 3D phase contrast methods, the proposed system does 

not require custom hardware. Also unlike other methods, our 

system only requires one angle to be imaged and can be used 

by any research group with a microscopy system capable of 

imaging in both phase and fluorescence.  
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Table 1: Depth map regression results 

Trees LSVM LSBoost

Precision Recall Precision Recall Precision Recall

cell 1 72.90% 89.12% 5.95% 50.52% 85.51% 69.02%

cell 2 75.83% 56.09% 10.02% 52.09% 88.30% 47.85%

cell 3 18.68% 86.65% 3.75% 95.76% 25.57% 88.46%

cell 4 65.97% 86.00% 10.52% 45.50% 87.12% 72.15%

cell 5 62.64% 75.87% 8.75% 48.75% 75.15% 53.90%

Fig. 3: Row 1: Ground truth and regression depth maps.  Row 2: 3D reconstructions of volumes from depth maps 

 

Fig. 4: Center phase contrast images of cells 2 to 5 
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