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Abstract

Person re-identification refers to recognizing people
across non-overlapping cameras at different times and lo-
cations. Due to the variations in pose, illumination con-
dition, background, and occlusion, person re-identification
is inherently difficult. In this paper, we propose a reference-
based method for across camera person re-identification. In
the training, we learn a subspace in which the correlations
of the reference data from different cameras are maximized
using Regularized Canonical Correlation Analysis (RCCA).
For re-identification, the gallery data and the probe data
are projected into the RCCA subspace and the reference de-
scriptors (RDs) of the gallery and probe are constructed by
measuring the similarity between them and the reference
data. The identity of the probe is determined by comparing
the RD of the probe and the RDs of the gallery. Experiments
on benchmark dataset show that the proposed method out-
performs the state-of-the-art approaches.

1. Introduction

Person re-identification is a recognition task in which
one matches the individuals across cameras in disjoint
views. Accurate person re-identification facilitates the un-
derstanding of human behavior in areas covered by surveil-
lance cameras. A direct application of re-identification is
people tracking in multi-camera systems [12].

Recently there have been a lot of interests and efforts
in person re-identification [6] [5] [18] [15] [10] [20]. How-
ever, the person re-identification still remains very challeng-
ing due to several reasons: (1) Low resolution. Most of the
surveillance cameras are not able to capture high-resolution
images due to hardware limitations, (2) Arbitrary poses.
Since a subject is captured by surveillance cameras with
non-overlapping field-of-views, the poses of the subject in
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Figure 1. Samples from VIPeR dataset [6] in two camera views.

each camera are usually not similar, (3) Changing illumi-
nation. The images are captured at different time and/or
locations. As a consequence, the appearance of the person
may change dramatically due to the illumination change, (4)
Occlusion. A subject may carry accessories such as a suit-
case which occludes the distinctive features of the subject
from a certain view. Figure 1 shows some sample subjects
captured in two different cameras. Due to large variations
in pose, illumination and background, the appearance of the
subjects differs significantly in the two views, which makes
person re-identification inherently difficult.

In order to recognize a given probe from a large gallery,
the basic idea is to first extract robust feature representa-
tions for both probe and gallery images, and then perform
the matching. This kind of approach is called appearance-
based and only the visual cues are used.

Different appearance-based methods can be categorized
into two groups. In the first group, the goal is to extract the
feature representations that have low intra-class variation
for the same subject and high inter-class variation among
different subjects [6] [5] [18]. However, due to the sig-
nificant appearance change across cameras, the intra-class
variation is often larger than the inter-class variation. As a
result, accurate classification is very difficult.

Another strategy is to learn the optimal distance measure
for the image pairs [20] [10] [13]. The metric learning ap-
proaches train a transformation for the original feature rep-
resentation by which the intra-class distances are minimized
while the inter-class distances are maximized. The draw-
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back of the metric learning approaches is that the learned
model tends to overfit the training data. Also, some popu-
lar approaches [19] [8] [3] may require high computational
costs due to complex optimization.

In this paper, we present a new framework for person
re-identification using a reference-based scheme. During
the training, a reference set containing images from differ-
ent camera views are used to learn a subspace in which the
data from different views are maximally correlated. Regu-
larized Canonical Correlation Analysis (RCCA) is used for
subspace learning. In the re-identification, given the probe
and gallery images, the features are extracted and projected
into the RCCA subspace using the learned projection ma-
trices. Instead of matching the features of the probe and
gallery directly, we generate a representation called refer-
ence descriptor (RD) using the reference set. The dimen-
sion of the RD is determined by the size of the reference
set and is irrelevant to the size of the original image fea-
tures. The matching is performed by measuring the sim-
ilarity between the RDs of the probe and gallery. In this
way, probe and gallery from different views are indirectly
compared with respect to the reference set instead of being
matched directly.

2. Related Work and Motivation
To extract stable feature representations from differ-

ent camera views, various pursuits have been reported.
In [2], the pictorial structures are adopted to localize the
human parts and part-to-part correspondences are searched
to match the subjects. Farenzena et al. [5] extract fea-
tures that account for the overall chromatic content, the
spatial arrangement and the presence of recurrent local mo-
tifs to match individuals with appearance variation. In [1],
a model is learned in a covariance metric space to select
features based on the idea that different regions for each
subject should be matched specifically. Gray et al. [7] use
AdaBoost to select the most discriminative features instead
of using handcrafted features. The re-identification is for-
mulated as a ranking problem with the development of an
Ensemble RankSVM (ERSVM) in [17]. In [9] a two-step
method is proposed by first using a descriptive model to ob-
tain an initial ranking which is refined in the second step by
a discriminative model with human feedback.

Recently, distance learning methods are gaining popular-
ity for re-identification. In [10], a relaxed pairwise metric
learning (RPLM) is proposed based on Mahalanobis dis-
tance learning which takes advantages of the structure of
the data with reduced computational cost, achieving the
state-of-the-art with simple feature descriptors. Köstinger
et al. [13] propose a simple yet effective method to learn
the distance metric based on a statistical inference perspec-
tive. Zheng et al. [20] formulate re-identification as a rel-
ative distance comparison (PRDC) problem which aims to
maximize the likelihood that the distance between a pair
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Figure 2. System diagram of our method. In the offline process,
the reference set is first used to train a RCCA subspace in which
the correlation between the data from two different views are max-
imized. After subspace projection, the gallery data are compared
against all the reference data from the same view camera and the
similarity scores form a new representation called reference de-
scriptor (RD). The RD of the probe is generated in a similar man-
ner and the correlation (cosine similarity) of the probe RD and the
gallery RDs are compared to decide the final matching result.

of images of the same person is smaller than a pair of im-
ages of different people. In [15] a transferred metric learn-
ing is motivated by the insight that multiple metrics should
be learned for visually different candidate sets. The stan-
dard metric learning techniques such as Large Margin Near-
est Neighbor (LMNN) [19], Information Theoretic Met-
ric Learning (ITML) [3], and Logistic Discriminant Met-
ric Learning (LDML) [8] are also applicable to person re-
identification. Dikmen et al. [4] develop a variant of LMNN
by introducing a rejection option to the unfamiliar matches
(LMNN-R) and achieve improved results.

Based on the number of images used, the aforementioned
approaches can be divided into two groups. The single-shot
approaches (e.g., [7]) use a single image to describe a sub-
ject from one view while the multiple-shot approaches (e.g.,
[9]) extract features from multiple images. In this paper,
we propose a novel framework for single-shot person re-
identification. Instead of designing complex feature repre-
sentations or learning the distance metric, we generate new
feature representations called reference descriptors (RDs)
for the probe and gallery data using a reference set. The ref-
erence set is a set of images of the subjects from different
views. The subjects in the probe and gallery are disjoint to
the subjects in the reference set. By using the reference set,
we bypass the necessity to match the image pairs directly
and the image feature space is transformed to the reference
space. Experiments on standard benchmark dataset show
that the proposed method outperforms current methods.

3. Technical Approach
The system diagram is illustrated in Figure 2. In the of-

fline process, the image pairs of the reference set are used
to learn a subspace by Regularized Canonical Correlation
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Analysis (RCCA) to maximize the correlation between the
data from different views. The features of the galley and
probe are extracted and projected into the learned RCCA
subspace and then their RDs are generated. The matching
is performed by measuring the similarity between the RDs
of the gallery and probe images.

3.1. Canonical Correlation Analysis

First introduced in [11], CCA aims to explore the rela-
tionship between two sets of random variables from the dif-
ferent observations on the same data (e.g., images of sub-
jects from different views). CCA finds projections such that
the correlation between these two sets of random variables
is maximized after projection. Figure 3 shows a pictorial
example of the CCA principle.

Given two sets of data observations, DA = {dAi ∈
Rm, i = 1, 2, ..., N} and DB = {dBi ∈ Rn, i =
1, 2, ..., N}, CCA aims at obtaining two sets of basis vec-
tors WA ∈ Rm and WB ∈ Rn such that the correlation
coefficient ρ of WT

AD
A and WT

BD
B is maximized. The

objective function to be maximized is given by

ρ =
Cov(WT

AD
A,WT

BD
B)√

V ar(WT
AD

A)
√
V ar(WT

BD
B)

=
WT

ACABWB√
WT

ACAAWAWT
BCBBWB

(1)

where CAA and CBB are the covariance matrices of DA

and DB . CAB is the covariance matrix of DA and DB .
Equivalently, the CCA can be formulated as a con-

strained optimization problem by

argmax
WA,WB

WT
ACABWB (2)

subject to WT
ACAAWA = 1 and WT

BCBBWB = 1.
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Figure 3. An illustration of the CCA principle. The filled and un-
filled shapes indicate data from two views. Before CCA projec-
tion, the data from different views are scattered in the original fea-
ture space (left). After CCA projection, the features of the same
data from different views are better coupled (right).

Using Lagrange multiplier, the solution of the optimiza-
tion problem for CCA is equivalent to the solution of the
following generalized eigenvalue problems

CABWB = λCAAWA

CBAWA = λCBBWB
(3)

where CBA = CT
AB . CCA is performed in an unsupervised

manner and both correlation maximization and dimension
reduction can be achieved simultaneously by choosing the
number of basis vectors to use.

3.2. Regularized Canonical Correlation Analysis
Often in practice, the feature dimension of the data is

significantly larger than the number of data samples. In this
case the covariance matrices CAA and CBB may be singu-
lar and their inverse would be ill-conditioned. Regularized
CCA (RCCA) has been proposed to solve this problem and
it prevents overfitting [14]. In the solution of RCCA, the
generalized eigenvalue problem becomes

CABWB = λ(CAA + λ1IA)WA

CBAWA = λ(CBB + λ2IB)WB
(4)

where λ1 and λ2 are the two non-negative regularization
parameters. IA and IB are two identity matrices. Usually
λ1 and λ2 are determined by cross-validation.

3.3. Offline Processing
In the offline training stage, images {IAi , i = 1, 2, ..., N}

and {IBi , i = 1, 2, ..., N} of N subjects from two dif-
ferent cameras A and B are available as a reference set.
The features (e.g., color and texture) from each image are
extracted and two feature sets {FA

i , i = 1, 2, ..., N} and
{FB

i , i = 1, 2, ..., N} are obtained. Since the features are
from images in different views, we first learn a RCCA sub-
space in which the correlations between these two sets of
features {FA

i } and {FB
i } are maximized. The RCCA pro-

jection matrices WA and WB are learned from Eq. 4.
By projecting the original features into the RCCA sub-

space, we obtain the projected features of the reference set
{fAi , i = 1, 2, ..., N} and {fBi , i = 1, 2, ..., N} with re-
duced dimension and enhanced correlation.

Suppose a gallery of M subjects are from camera A, the
features of the gallery subjects are extracted and projected
using WA. The representation for the jth subject in the
gallery set is fgj . From fgj a new representation RD Rg

j

is calculated by

Rg
j = [s(fgj , f

A
1 ), s(fgj , f

A
2 ), . . . , s(fgj , f

A
N )]T (5)

where s(a, b) denotes the similarity between the features a
and b. We use the inverse of the Euclidean distance as the
similarity measure. In this process, the representation of the
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Figure 4. The reference descriptor (RD) for a probe/gallery subject is generated by computing the similarity between the probe/gallery
data and each of the subjects in the reference set. N is the number of subjects in the reference set and si is the similarity between the
probe/gallery and the ith subject in the reference set.

gallery subject is transformed to a descriptor of lengthN re-
gardless of the original feature dimension and each element
in Rg

j indicates the similarity between this gallery subject
and a reference subject. The projected features of the ref-
erence set from camera A {fAi , i = 1, 2, ..., N} are acting
like basis functions and they jointly describe the appearance
of a gallery subject by similarity measures. Figure 4 shows
the basic idea of how the RDs are generated.

The rationale for first projecting the features into the
RCCA subspace is to better couple the features {fAi , i =
1, 2, ..., N} and {fBi , i = 1, 2, ..., N}. In the re-
identification, a probe image is described using {fBi , i =
1, 2, ..., N}. Since {fAi , i = 1, 2, ..., N} and {fBi , i =
1, 2, ..., N} are maximally correlated after RCCA projec-
tion, the matching between the RD of the probe and the RD
of the gallery becomes meaningful and reliable.

3.4. Re-Identification
The goal of re-identification is to accurately recognize a

probe subject in one camera view from a gallery of identi-
fied subjects in a different camera view. Suppose the detec-
tion of a subject from camera B (Ip) is given as probe, the
features F p are extracted. The projected feature fp in the
RCCA subspace is given by

fp =WT
BF

p (6)

The RD of the probe, Rp, is computed using the pro-
jected features of the reference set from camera B {fBi , i =
1, 2, ..., N} by

Rp = [s(fp, fB1 ), s(fp, fB2 ), . . . , s(fp, fBN )]T (7)

where fBi is the projected features of the reference subject
i in camera B.

The identity of the subject is determined by finding the
subject k that is most similar to the probe using cosine sim-
ilarity between Rp and Rg

k among M gallery subjects

argmax
k

(Rp)T ·Rg
k

‖Rp‖ ‖Rg
k‖

(8)

Compared to other similarity/distance measures (e.g., Eu-
clidean, Chi-square), cosine similarity is computationally
efficient especially for high dimensional feature descriptors
and/or large datasets.

4. Experiments

4.1. Dataset

We evaluate our method on the VIPeR dataset 1, which
is one of the most popular benchmark datasets for person
re-identification [6]. The VIPeR dataset is designed in a
single-shot scenario. It contains image pairs of 632 pedes-
trians. The images were taken by two cameras with signif-
icant view change. In addition, the illumination may also
change dramatically. Other aspects such as cluttered back-
ground and occlusions further make this dataset more chal-
lenging. It is considered as the most challenging dataset
currently available for pedestrian re-identification. For each
person, a single image is available from each camera view.
All of the images in the VIPeR dataset are normalized to
128× 48. Some sample image pairs are shown in Figure 1.

In our experiments we follow the experimental protocols
in the previous work [5] [13]. The image pairs are randomly
divided into two sets of 316 pairs each. One set is used
as the reference set and the other is used for testing. In
the testing, the images from one camera are used as gallery
data and images from the other camera are the probes. The
experiments are performed 10 times and the average results
are reported.

1Available at http://vision.soe.ucsc.edu/?q=node/178
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4.2. Feature Extraction and Parameters

For feature descriptors we follow the feature extraction
scheme in [10]. The HSV and Lab color features are used to
describe the color appearance of the subject. For the texture
descriptor we use Local Binary Patterns (LBP) [16]. The
image is divided into blocks of size 8× 16. The blocks are
overlapping by 50% in horizontal and vertical directions.
Thus, the total number blocks for one image of size 128×48
would be 31×5 = 155. For each block, the quantized mean
values of the HSV and Lab color channels are computed.
The 8-bit LBP histogram is extracted from the block and
the final feature representation is the concatenation of the
means of the color channels and the LBP histogram. In the
RCCA projection the first 50 eigenvectors in the projection
matrices WA and WB are used (i.e., the RCCA reduces the
dimensions of the original features to 50). λ1 and λ2 are
set to 10−1.6. The number of RCCA dimensions and the
regularization parameters are chosen by cross-validation for
optimal re-identification accuracy.

4.3. Evaluation Criteria

The top rank recognition rates and the Cumulative
Matching Characteristic (CMC) curves are reported. The
CMC curve represents the expectation of finding the cor-
rect match in the top r matches. In other words, a rank-r
recognition rate shows the percentage of the probes that are
correctly recognized from the top r matches in the gallery.

4.4. Comparisons to Current Methods

Table 1 shows the comparisons of the proposed method
and the state-of-the-art approaches that either focus on fea-
ture extraction and selection or distance metric learning. As
compared to all the current methods, our approach achieves
the highest recognition rates in the top ranks listed in Ta-

Rank→ r = 1 10 20 50 100
Proposed 30 75 87 96 99

RPLM [10] 27 69 83 95 99
PS [2] 22 57 71 87 N/A

SDALF [5] 20 50 65 85 N/A
KISSME [13] 20 62 77 92 98

DDC [9] 19 52 65 80 91
LMNN [19] 18 59 75 91 97
PRDC [20] 16 54 70 87 97
ITML [3] 14 52 71 90 98

ERSVM [17] 13 50 67 85 94
ELF [7] 12 43 60 81 93

LDML [8] 5 21 30 51 71
LMNN-R* [4] 20 68 80 93 99

Table 1. The comparison of the top ranked recognition rates (in %)
on the VIPeR dataset. (* indicates the best run reported.)
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Figure 5. The comparison of the CMC curves for the proposed
method and RPLM [10]. The CMC curve by only using RCCA is
also provided.

ble 1. Figure 5 shows the CMC curves comparison up to
the rank 30 since the recognition rates in the top ranks are
of most importance. Compared to the second best results by
RPLM [10], the proposed method performs better at differ-
ent ranks and at rank-1 the performance gain by our method
is over 11%. Moreover, compared to the recognition re-
sults using RCCA projected features only, the combination
of RCCA and RDs boosts the results. Note that even when
only RCCA projected features are used for direct matching
without RDs, the results are still competitive compared to
the current methods in Table 1.

4.5. Effects of Reference Set Size
In Table 2 we evaluate the performance of our method

with reduced reference set (referred as training set in [10]
and [20]). In this case all the data from the VIPeR dataset
are used. That means, as the size of the reference set de-
creases, the number of subjects in the gallery and probe data
increases, which raises the difficulty of the re-identification
task. As can be seen in Table 2, even with smaller refer-
ence set, the proposed approach still achieves the best re-
sults compared to RPLM [10] and PRDC [20]. In addition,
the CMC curves of the proposed method up to rank 30 with
different reference set sizes are shown in Figure 6.

Figure 7 shows the impact of the size of the reference set
on the same testing data. In this case the sizes of the gallery
and the probe data remain the same (316, half of the VIPeR
dataset). As shown in Figure 7, the recognition rates remain
low with a very small reference set. The reason is that a
small reference set is not able to effectively describe and

Ref. set size→ N=200 N=100
Rank→ r = 1 10 20 r = 1 10 20

RPLM [10] 20 56 71 11 38 52
PRDC [20] 13 44 60 9 34 49
Proposed 22 59 75 15 47 60

Table 2. The comparison of the recognition rates (in %) with dif-
ferent reference set sizes.
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Figure 6. The comparison of the CMC curves of the proposed
method with different reference set of size N .
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Figure 7. The recognition rates with different sizes of the reference
set on the same testing data.

distinguish a much larger gallery and probe set of different
subjects. The performance keeps increasing as the reference
set expands. With more than 260 subjects in the reference
set, the performance tends to stabilize.

5. Conclusions
In this paper, a referenced-based approach for single-

shot person re-identification is proposed. In contrast to the
previous methods in which either sophisticated features are
developed or the distance metric is learned, a reference set
with images from different camera views is utilized. We
first project the features of the reference set into a com-
mon subspace where their correlation is maximized using
Regularized Canonical Correlation Analysis (RCCA). The
projected features of the reference set are then used to gen-
erate the reference descriptors (RDs) for the gallery and the
probe data. The re-identification is performed by compar-
ing the RDs of the probe and gallery subjects. The advan-
tage of the proposed method is that the direct comparison
between the gallery and probe in the original feature space
is bypassed and the RDs are more distinct among different
subjects and more consistent for the same subject despite
of the large appearance variation in the original images, as
a result of correlation maximization using RCCA. In addi-
tion, the dimension of the RDs is irrelevant to the original
feature representation. Therefore, different features can be
extracted from different camera views for better discrimina-

tion. The experiments on a challenging benchmark dataset
show that the proposed method outperforms the state-of-
the-art methods.
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