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ABSTRACT 

Human Embryonic Stem Cells (HESCs) are promising for 
the treatment of many diseases and for toxicological testing. 
There is a great interest among biologists to automatically 
determine the number of various types of cells in a 
population of mixed morphologies. This study addresses 
quantification of non-dynamic blebbing single unattached 
human embryonic stem cells (NDBSU-HESCs) that are in 
suspension and do not show evidence of blebbing. Current 
image processing methods are inadequate for detecting these 
cells in real time. In this paper, we propose a method for 
NDBSU-HESC detection by using multiple trained 
classifiers where each classifier eliminates cells with 
properties unmatched to NDBSU-HESCs. The paper 
validates the method with many videos captured with live 
stem cells.  

Index Terms— Video Bioinformatics, Phase contrast 
images  

1. INTRODUCTION 

Video Bioinformatics is an emerging field to provide a 
solution to biologists’ need for faster and easier ways to 
analyze large volumes of video data. The biologists who 
study human embryonic stem cells (HESCs) have to deal 
with stem cell videos every day, and the analysis of videos 
is a laborious manual process. It is important to use the 
information from time lapse videos to study HESCs’ 
behavior during exposure to various chemical agents.  

Most stem cell videos are taken with the phase contrast 
microscopy. It is challenging to analyze these videos 
automatically. The low signal to noise ratio (SNR) of the 
phase contrast images makes it hard to analyze the contents 
in the image and detect non-dynamic blebbing single 
unattached human embryonic stem cells (NDBSU-HESCs) 
[5]. Figure 1 shows non-dynamic blebbing, dynamic 
blebbing, apoptotic dynamic blebbing and dead cell in 
videos. The NDBSU-HESC is the earliest stage of a cell 
before attaching to any chemical agents [3].  Hence, it is 
important to detect these cells accurately before/after 
treating them with chemicals.  

 The proposed method in this paper has three steps for 
the detection of NDBSU-HESCs; inner cell region 
detection, feature-based classification and NDBSU-HESC 
identification. The first step finds inner regions of the 
NDBSU-HESCs. The second step determines the credibility 
of the found inner regions based on their size, eccentricity 
and convexity [2]. The third step identifies NDBSU-HESCs 
by performing a correlation analysis between the target 
region and the training data.  
 

2. RELATED WORK AND CONTRIBUTIONS 
 

Existing papers detect cells in phase contrast images under 
simple environment [4] [7]. Eom et al. [4] discuss two 
methods for cell detection: detection by circular Hough 
transform (CHT) and detection by correlation. The CHT is 
sensitive to the variations of shape and appearance.  
Therefore, this method is not viable for the detection of 
NDBSU-HESC under an environment where dynamic 
blebbing is occurring. The correlation method [7] is also not 
suitable for our purpose since it does not work with 
overlapping cells [4]. Further, we need to detect the 
NDBSU-HESCs mainly from the cell clusters. The 
contribution of this paper is a detection method for NDBSU-
HESCs in a complex environment where dynamic blebbing 
of stem cells occur everywhere in a frame. 
 

3. TECHNICAL APPROACH 
 

3.1. Motivation and Problem Formulation 
 

In order to study the effect of toxins on NDBSU-
HESCs, we need to detect the presence of these cells in each 
video frame. The videos are captured with BioStation IM 
[1]. We are dealing with low SNR phase contrast images of 

Figure 1(a) Non-dynamic blebbing unattached cell; 1(b) Dynamic 
blebbing; 1(c) Apoptotic dynamic blebbing; 1(d) Dead Cell. 

1(a) 1(b) 1(d) 1(c) 
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stem cells that are undergoing dynamic morphological 
changes (blebbing) and cells that are not changing 
morphologically. This dynamic blebbing makes the 
detection of NDBSU-HESCs harder if it happens in a cell 
cluster. Therefore, the two major problems for detecting 
NDBSU-HESCs are: 

1. Low SNR of phase contrast images. 
2. Poor NDBSU-HESC recognition in a mixed 

population of cells. 
To analyze the information in the phase contrast images, 

we need to know characteristics of the cell regions. We find 
that cell regions in the phase contrast image have high 
intensity variation. We use this fact to narrow down the 
classification regions which are further analyzed and 
verified. Figure 2 shows the overview of the proposed 
method. 

 
Figure 2: Overview of the Detection Method for NDBSU-HESCs. 

3.2. Pre-Processing 
 
 A pre-processing procedure is applied to each frame in 
a video to emphasize intensity differences between the cell 
regions and the background.  is the input image and the 
pre-processing of  is described by the following 
equations:  

                         (1) 
 The images are normalized by the following equation: 

(2) 

 
3.3. Inner Cell Region Detection 
 
Inner cell region detection is a Bayesian classifier that 
assigns high probability value to the inner regions of the 
NDBSU-HESCs. Equation (3) shows the principle of our 
first (Bayesian) classifier [8]. 

           (3) 

 where  is a probability of target’s intensity, , 
given model, , belongs to the inner cell region.  is a 
given intensity pdfs of NDBSU-HESCs’ inner regions, and 

 is the normalized Euclidean distance, , which is 
obtained by the following equations discussed below. 

Since cell regions have higher intensity variation than 
the background, we use an entropy based method to separate 
cell and background regions. The entropy is computed using 
the gradient magnitude of the image. The gradient 
magnitude of the image yields more information on high 
variation regions which are the cell regions, and it is 
computed using the equation given below: 

                              (4) 

 where  and  are gradients of  in the x and y 
direction.  
 After we have obtained  we use it for the entropy 
calculation and the equation is shown below: 

       

                (5) 

 where  is a probability of  at the image 
location ;  is a set of neighboring 
locations of . Equation (5) yields a bimodal image 
which allows us to find the cell regions easily [2].  
 The max filter is also used to further enhance the 
bimodal effects on . 

               (6) 

        is the resulting image after max filtering, and 
  is a set of neighboring locations of . 

 With found, we obtain a binary image, , by 
performing a conventional OTSU thresholding on , and 
the result is shown in Figure 3(a) [6]. We know that  
consists of many individual cell regions. Therefore, we note 
that   is the Euclidean distance transform of the  region 
in for .  As the result, we have the following 
equation as the normalized Euclidean distance 
transform, , for .  is shown in Figure 3(b).  

                              (7) 
 We use  as our prior probability to enhance the 
detection of NDBSU-HESC’s inner cell regions. Finally, 
to reduce the edge effects while emphasize the inner cell 
regions, equation (3) is modified as equation (8) given 
below.  

          (8) 
 The final result of Equation (8) is shown in Figure 4(b).  
Figure 4(a) shows the probability map without the prior 
probability, . 
 
3.4. Feature-based Classification 
 
Feature-based classification utilizes the normalized 
probability map, F (equation (8)), found from the previous 
step to obtain the probable inner cell regions of the NDBSU-
HESCs.  The classification method uses the area size, 
eccentricity, and convexity of each probable inner cell 
region to construct the feature vector. These regions are then 
passed through a size filter, and regions with undesirable 
feature values are removed. The filtered regions satisfy one 
of the following conditions: 

1) At least one of the region’s feature values is greater 
than the maximum area size, eccentricity, 
convexity values in the training data.  

2) A region’s size is less than the minimum area size 
in the training data.  
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The Euclidean distances of the target’s feature vector 
and the feature vectors in the training data are calculated by: 

   (9)  

The symbol  is the Euclidean distance of the target 
feature vector and feature vectors from the training data 
where .   is a matrix that contains the 
differences of the target feature vector and feature vectors in 
the training data. Since we have three features in our 
classification method, we have J equal to  and 

.  
The feature-based classification is intended to give us 

the inner cell regions that have lower Euclidean distance 
than the defined threshold.  This classification step yields 
centroid locations for the regions for which the minimum of 

 is less than or equal to the user defined threshold.  

3.5. NDBSU-HESC Identification 

We use contrast stretching and Gaussian filtering on the 
image to enhance regional similarities. It further segregates 
the background region from the cell regions.  The NDBSU-
HESC identification step calculates correlation coefficients 
for each possible NDBSU-HESC region with all the training 
data. Each NDBSU-HESC region will have a set of 
correlation coefficient with the training data. We compare 
the user defined threshold with the maximum correlation 
coefficient in that set. We repeat the same process for each 
possible NDBSU-HESC regions to eliminate unmatched 
regions. The final result of this classifier is shown in Figure 
5. 

4. EXPERIMENTAL RESULTS 

4.1. Data 

We gathered our phase contrast video frames using a 
BioStation IM. The video frames that we tested our 
approach on were taken using an objective of 20  with a 
600  800 resolution. Each frame is captured every ten 
minutes.  

4.2. Parameters 

To estimate the probability map for the NDBSU-HESC 
regions, we use two parameters for the phase contrast video 
frames. The first parameter is the acceptable threshold for 

 which is 0.2.  The second parameter is the 37 x 37 
processing window for the Bayesian classifier which is the 
normal size for the inner cell regions. The acceptable 
minimum Euclidean distance measure for the feature-based 
classification is 0.51.  The maximum acceptable correlation 
coefficient parameter for the NDBSU-HESC identification 
step used in this paper is 0.75. All experiments are run with 
the same four parameters. 

4.3. Results 
 
Figure 6 shows the sample frames of video # 1 to 3.  Figure 
7 compares our estimation of NDBSU-HESCs with the 
ground truth.  Our estimation matches closely with the 
ground truth. Since video #3 is a toxicity experiment, all 
healthy cells should be dead eventually. Figure 8 shows the 
ROC plots for different videos. 

(a)                                                  (b) 
Figure 3: (a) Binary image, (b) Normalized Euclidean dist. of (a) 

  
                        (a)                                                  (b) 
Figure 4: (a) Probability map without the prior probability, (b) 
Probability map with the prior probability (Color black represents 
higher probability while color white represents low probability)  

5. CONCLUSIONS 
 
NDBSU-HESCs detection by successive elimination of its 
unmatched properties is plausible. The method yields high 
true positive rate while it gives low false positive rate.  The 
false positive rate is less than 5% for all the experiments. 
The method also matches the trend of the ground truth of the 
experiment closely. To improve the accuracy further, we 
will investigate into getting more frames per second to 
establish inter-frame relationships to better estimate the 
NDBSU-HESC regions. 

Figure 5: Detected NDBSU-HESCs 
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Figure 7: Cell count comparison plots of video #3 

 
Figure 8: True positive rate vs. false positive rate (ROC Curves: 
the red squares are the results with our parameters.) 
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Figure 6: The sample results of video #1, #2 and #3. 
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