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ABSTRACT

In a video sequence with a 3D rigid object moving, 
changing shapes of the 2D projections provide interrelated 
spatio-temporal cues for incremental 3D shape 
reconstruction. This paper describes a probabilistic 
approach for intelligent view-integration to build 3D model 
of vehicles from traffic videos collected from an 
uncalibrated static camera. The proposed Bayesian net 
framework allows the handling of uncertainties in a 
systematic manner. The performance is verified with several 
types of vehicles in different videos. 

Index Terms – Learning, 3D shape from video

1. INTRODUCTION 

Shapes may change due to activities of flexible objects (e.g., 
human face), or due to 3D-to-2D projections from different 
viewpoints (e.g., a moving object in video). For face, 
changing shapes give problem to face recognition 
algorithms. While in 3D reconstruction, changing shapes 
and their interrelations provide valuable cues for 
incremental view integration. Actually, this spatio-temporal 
information flow is the key to 3D perception of shapes in 
2D videos. This paper presents a Bayesian net framework 
[15] to handle uncertainties in the evidences and conditional 
dependencies among the intermediate variables to build 3D 
model of the moving vehicles in typical traffic scenarios. 
Uncalibrated static video camera provides different 2D 
views that gradually change to reveal new 2D features 
and/or hide previously seen features. Incremental view 
integration sews the evidences to learn the entire 3D model. 

Most of the 3D model building methods use either 
range data [1, 2] or calibrated camera setup [3, 4, 5]. Range 
data is used for pose registration [1] or shape correlation 
and integration [2]. With calibrated setup, multi-view stereo 
reconstructions uses min-graph cut and triangulation [3], or 
polarization [4], or dictionary of primitives [5]. Some use 
modeling of structures from reflections [6]. For vehicle 3D 
model building from traffic video, range sensors are too 
cumbersome and calibrated setups [7, 16] with turntable 
based toy problems are often impractical. In [8], extended 
Bayesian net (EBN) is used to reconstruct 3D model of 
buildings from multiple aerial views. But motion, dynamics 
and temporal order are not utilized. 

Most of the vehicle-centric image processing and 
computer vision methods are in 2D. A recent work [9] has 

used similar views, pose templates and primary edge 
directions [9] where entire vehicle is seen, which is not a 
valid assumption for traffic video with vehicles in motion 
[10]. 3D models have been seldom used, for 3D-2D 
projection, in the context of extended Kalman filter (EKF) 
based tracking [13], or edge/region based tracking under 
calibrated setup [11, 12]. But calibrating traffic cameras is a 
difficult proposition and hence avoided in [10] where 3D 
generic model and directional templates are used to map 
2D-to-3D, using incremental clustering for 3D vehicle 
model reconstruction, with a non-probabilistic reliability 
measure. Notably, this work bypassed the stochastic nature 
of frame-based features and hence the probabilities of the 
3D estimations over time. 

None of the previous works has explicitly used spatio-
temporal evidences across the frames to build 3D model 
with systematic handling of uncertainty in video sequences. 
The key contributions of the current work are: (1) 3D 
model building of several vehicles from uncalibrated videos 
and (2) stochastic scalable view integration in video. 

2. TECHNICAL APPROACH

We use a single 3D generic model of vehicles (Fig 1(a)) that 
can represent several types of vehicles (Fig 1(b)). With the 
vehicle moving in an uncontrolled traffic scene, views of 
the vehicle changes gradually with different 2D features 
having different lifecycles that are interdependent spatially 
and temporally. On the basis of the 2D features observed so 
far in the video sequence, parameters of the generic model 
are incrementally tuned to instantiate the 3D model of the 
target vehicle. The approach consists of the following steps: 

(a) (b)
Fig 1: (a) 20-vertex-15-surface generic vehicle model with generic 
vertex numbers (b) Examples of represented vehicles. 

Step 1: Feature Extraction 
We use 2D corners and linear edge-segments (referred as 
“lines” subsequently) as the 2D features. Due to video-
smoothness, lane-based-motion and structural-rigidity 
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constraints, instead of independent frame feature extractions 
in [10], we employ global prediction-verification method to 
reduce computational complexity significantly. For every 
new features appearing for the first time, we initialize 2D 
location and track the global frame-structure of the vehicle 
using 11x11 window search with intensity based matching 
over 5x5 patches around the 2D corners.  

Prior probability p(ei) of individual edge-point (ei) is 
defined by its normalized edge-magnitude. Least square line 
fit [14] of close edge-points defines a line (E). The 
probability p(E) is defined  by normal distances (di) of the 
edge-points (ei) from the line E and the p(ei)’s (eqn (1)). 
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The intersections of lines (E) define the 2D vertices 
(V). When several lines meet at close points {Vp}, we take 
the weighted mean of them as V. The conditional 
probability of a vertex, given the lines, (i.e., p(V| Ei, Ej)), is 
defined (as in eqn (2)) by the distances VVp

d ,  between the 

centroid V and the corresponding individual points Vp’s.
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Step 2: Motion estimation 
Local displacements are algebraic difference vectors (Di) of 
the locations of corresponding corners (Vi) seen in both the 
consecutive video frames. Hence conditional probability of 
each D given V’s is always 1. The global 2D motion for 
current frame (Mt) is defined by the mean of the Gaussian 
fit of the D’s. Conditional probability of the Mt given the 
D’s is defined by the similarity between their directions, as 
in eqn (3). Mt also depends on Mt-1, the motion in the last 
frame. In a high data rate (frames per second (fps)) video, 
smooth flow of the traffic implies that the global motion can 
change only slowly across the frames. Thus, the current 
frame motion (Mt) should be close to the last frame motion 
(Mt-1) to satisfy this smoothness. The conditional 
dependence p(Mt | Mt-1) is defined by the probability mass 
for the Gaussian pdf of Mt-1 at current value Mt. Present 
work considers only smooth motion direction. 

sD'all:
sD'all:

sD'all:

11

1*2.01

1*2.01
||

|.|,|

k
k

tt
k

tt
i

k

t
i

tt
i

t

ttt
i

ttt
i

t

MD

MD
DMpiDMp

MMpiDMpMiDMp  (3) 

Step 3: Orientation estimation 
An object-centered coordinate system (OCC) avoids the 
requirement of calibrated setup for 3D model building. The 
right hand lower corner of the frontal face of the vehicle 
(corner 1 in Fig 1(a)) is taken as the OCC origin. Three 
lines (E01, E02, E03) intersecting at the origin define the 
directions of the 2D projections (Cr) of the 3D OCC axes. 

Line (closely) parallel to Mt is the 3D Y-axis, i.e., Cr(2). 
Line (closely) parallel to the image-Y axis, is the 3D Z-axis, 
i.e. Cr(3) (we constrain Cr(3) = 90°). And the line furthest 
from the direction of Mt, is the 3D X-axis, i.e. Cr(1). The 
conditional probability of Cr, given (E01, E02, E03) and Mt, is 
defined by the angular relations between them, as in eqn (4). 
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For street constraints, orientation can change only in 
azimuth. Hence we use directional template method 
proposed in [10]. Each directional template vector (Ti) in 
the library contains (i) 3D azimuth angle (Ti,1) (ii) 2D angles 
of the projections of 3D coordinate axes for this azimuth 
(Ti,2-4), and (iii) the corresponding scale factors (Ti,5-7) in 
OCC axes directions to map 2D observed distances to 3D 
estimated distance. As these templates (Ti, i=1, 2, .. 180) are 
known a priori, they are root nodes with equal probabilities. 

The closest match of Cr vector in the template library, 
(precisely, between Cr1-3 and 180

142, iiT ) determines the 3D 
orientation (azimuth) of the vehicle and this closest template 
is called 2D-to-3D mapping vector for the present frame 
(MVt). Its conditional probability depends on the Euclidian 
distances between Cr and the directional templates, actually 
similarity between them, as shown in eqn (5). MVt also 
depends on MVt-1, the mapping vector for the previous 
frame. Street lane restricts wide variation in orientation 
(azimuth) of a moving vehicle, specifically in a high fps 
video. So the mapping vector in the current frame (MVt)
causally depends on its counterpart in the last frame (MVt-1).
The conditional dependence p(MVt | MVt-1) is defined by 
the probability mass of Gaussian pdf of MVt-1 at MVt.
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Step 4: Mapping 2D features to 3D - Estimation 
Propagation 

We start mapping from the OCC origin taken as [0 0 0] in 
3D. A path, consisting of connected lines (E) from the OCC 
origin to any particular vertex (V), is used to propagate the 
2D-to-3D mapping. Among several possible paths, we 
select the best one with the highest unified score (F). F is 
defined for the collection of lines in the path, and depends 
on three factors (in the descending order of importance): (i)
the number of lines not parallel to the OCC axes directions 
(from MV), (ii) the number of lines, and (iii) the average 
probability of existence of the lines (E). Conditional 
probability of the best path is defined by the mean of the 
prior probabilities of the lines in the path. Due to newly 
encountered features and different noise statistics for 
different frames, the best path for the same corner can 
evolve over the frame sequence. Thus, proposed method 
incrementally considers available evidences in the video. 
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Step 5: Single-frame 3D Model Estimation 
2D to 3D mapping of a vertex (V) starts from the OCC 
origin (3D coordinates [0 0 0]) and propagates estimation 
along the best path (P) of the vertex. We find that 3D 
location of a vertex ( D

iV 3 ) depending on the 2D vertex 
(Vi), the scale factors in the mapping vector (MVt) and the 
best path of the vertex (Pi). The conditional probability in 
eqn (6) is related with average directional similarity of the 
lines (in the path) to the 3D OCC-axes projection directions 
in the mapping vector (MVt).
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The generic model (in Fig 1(a)) provides two structural 
constraint matrices for vertices (VSC) and lines (LSC), as 
defined in the eqn (7) and (8) respectively. As these are 
known a priori, they have prior probabilities equal to 1. 
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Step 6: Incremental 3D Model Estimation 
We also compute structural relations for the estimates of 

the 3D vertices (VSR) and the 2D lines (LSR) by eqn (7) 
and (8). Comparison of (VSR and LSR) with their generic 
counterparts (VSC and LSC) provides structural similarity.  
The conditional probabilities of the 3D model parameters, 
given the structural constraints, p(Vi

M | VSC) and p(Ei
M | 

LSC) are defined by these similarity values, normalized by 
the total number of vertices and lines in the generic model. 

The 3D location of a vertex (Vi
M) of the 3D incremental 

model of the current vehicle are computed by a linear 
combination of the estimate from only the current frame 
(Vi

3D ) from eqn (6) and its incremental counterpart in the 
previous frame (Vi

M_last), where the weight for the last one 
depends on  the number of frames previously seen (i.e., 
reliability depend on the number of frames considered). The 
conditional probability of the vertices in the incremental 3D 
model VSCVVVp lastM

i
D

i
M

i ,,| _3  is also defined as a 
weighted normalized sum of the individual conditional 
factors p(Vi

3D) (from eqn (6)), p(Vi
M_last), and p(Vi

M | VSC).  

Similar is the case for LSCEEEp lastM
i

D
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the last three weighted sums, weights depend on the number 
of frames considered for the computation (i.e., parameters 
of the previous frame are weighted more than the one from 
only the present frame). Note that the 3D locations of the 
vertices along with their connectivity matrix from the 2D 
line features specify the entire 3D model. Hence we define a 
unified model probability by the average of the probabilities 
of the visible vertices (eqn (9)). 
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3. EXPERIMENTAL RESULTS 

We have used traffic video data collected in two different 
locations with a static uncalibrated video camera and several 
types of vehicles. Sample frames of the videos in Fig 2 
show the changing shapes of the 2D projections of the 
vehicles in the image plane. 

Fig 2: Sample frames of the traffic videos of several types of 
moving vehicles in two different traffic locations. Rows: (1) Sedan 
type 1, (2) Sedan type 2, (3) SUV, (4) Jeep, (5) Pickup, (6) Van. 

We show the incrementally estimated 3D model of the 
Van learned from the projected-shape changes in the video 
in Fig 3. Initially, when we see only few frames, too little 
information over-estimates model correctness (Fig 4(f)). 
The drop in the probability is actually due to nullification of 
this effect. Then, as we see more number of frames, 
robustness increases and hence, in general, the probability 
of correctness of the 3D model features increases.  

For brevity, we summarize the performance of the 
proposed work in terms of the learning curves of the 
Bayesian framework for the model probability in eqn (9). 
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Fig 3: Incrementally learned 3D models from changing projections 
of the van, in row-column order, for frames 17, 22, 47, 77, 230, 
and 260 respectively. Probabilities of correctness of the 3D model 
parameters are color-coded (scale superimposed). Estimated 3D 
locations of the model corners are shown for each frame as well. 

Fig 4: Probability of learned models over the length of videos (in 
row-column fashion): Sedan type 1, Sedan type 2, SUV, Jeep, 
Pickup, and Van. X-axis: Frame numbers, Y-axis: Model 
probability from eqn (9).

We acquired Car1 video data from the publication in 
[10]. For this video, very little top-view of the vehicle is 
visible. As a result the estimates for vertices (numbers > 10) 
on the far-side OCC YZ plane are not highly accurate. We 
get 0.8 probability of correctness by our proposed approach, 
compared to 0.65 reliability values in [10]. 

4. CONCLUSION 

This paper shows how spatio-temporal interdependently 
changing projected 2D shapes of a rigid 3D object can be 
used to integrate views incrementally for 3D shape 
reconstruction. A Bayesian incremental learning method is 
proposed that tunes the parameters of a single 3D generic 
model to estimate the 3D model of the target vehicle. 
Performance for several types of vehicles shown in this 
work validates the potential of the proposed approach for 
3D model building from uncalibrated videos of moving 
rigid objects. 
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