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ABSTRACT 

Unlike existing methods that used the human actions or 
trajectories to analyze the human activity in overlapping 
field-of-views, this paper proposes the appearance and travel 
time-based human activity classification in the camera 
network of non-overlapping field-of-views. The mixture of 
Gaussian-based appearance similarity model incorporates 
the appearance variance between different cameras to 
address changes in varying lighting conditions. To address 
the problem of limited labeled training data, we propose the 
use of semi-supervised Expectation-Maximization algorithm 
for activity classification. The human activities observed in a 
simulated camera network with nine cameras and twenty-
five nodes are classified into one normal and three 
anomalous classes. A similar camera network is built and 
tested in real-life experiments, in which the proposed 
approach achieves satisfactory performance.  
 

Index Terms— surveillance, activity analysis, camera 
network, semi-supervised learning 
 

1. INTRODUCTION 
Networks of video cameras are being envisioned for a 
variety of applications and many such systems are being 
installed. Thanks to the mass production of CCD or CMOS 
cameras and the increasing requirement in elderly assistance, 
security surveillance, traffic monitoring etc, a large number 
of video cameras has been deployed or are being constructed 
in our every-day life. However, most existing systems do 
little more than transmit the data to a central station where it 
is analyzed, usually with significant human intervention. As 
the number of cameras grows, it is becoming humanly 
impossible to analyze dozens of video feeds effectively. 
Therefore, we need methods that can automatically analyze 
the human activities in the video sequences collected by a 
network of cameras. 

Suppose there are humans walking in the scene 
consisting of the conference room, the hallway, the patio and 
the doors to the stairs. Since the space is divided by the 
walls and rooms, the paths people can take are relatively 
constrained. Also, the travel times between the entry and 
exits of the key areas are relatively fixed depending on the 
characteristics of the pedestrians. The violation of the 
common paths and travel times constitutes the anomalous 
activities. For instance, there is someone taking the 
emergency exit of the conference room instead of the main 
door for convenience. It results in the unusual travel time 

between the conference room and the stairs much shorter 
than it is supposed to be. Another example is that someone 
climbs over the wall to circumvent the access control 
installed at the main entrance. Therefore, it seems as that the 
object suddenly appears at the door of the conference room 
without previously being detected at the main entrance. 
Other examples includes: suspicious long stay in the 
conference room and the sudden disappearance of the 
subject after showing at the entrance which means that the 
subject might hide somewhere. All these human activities 
mentioned above can be categorized to four main types: 
break-in, stay, sudden appearance/disappearance and 
normal. Among them, the first three anomalous activities 
require further attentions or human involvement.  

There are many ways to classify the observed human 
activities and many sensor modalities available for this 
purpose such as imaging sensors [2][4], ultrasonic sensors 
[5], etc. Here we focus on anomalous human activity 
classification based on the widely used video cameras. One 
possible way is to track the objects (humans) across the 
overlapping field-of-views (FOVs) of different cameras and 
determine the types of human activities based on the 
observed tracks and travel times. However, the assumption 
of overlapping FOVs requires a huge number of cameras to 
cover a large area. The data volume increases exponentially 
along with the equipment cost making such an idea 
impractical. On the contrary, non-overlapping cameras 
overseeing the entry/exits in the environment greatly reduce 
the complexity of the surveillance system. However, the data 
correspondence problem also arises since there are multiple 
objects moving in the space and there exist “blind” areas or 
“gaps” between the FOVs. 

We build upon these ideas to develop a framework for 
analyzing the activity patterns of a group of pedestrians 
given the inferred network topology and appearance 
similarity distribution. This paper uses the appearance 
similarity and travel times observed from much fewer 
cameras with non-overlapping FOVs to classify the human 
activities into four different classes: normal, break-in, stay, 
and sudden appearance/disappearance. This paper employs 
the color histogram-based appearance similarity to establish 
the correspondence between departure and arrivals at 
different nodes, and use the statistical model of appearance 
similarity to incorporate the uncertainty and variance of 
appearances between different FOVs under varied lighting.  

Moreover, for a traditional learning-based classification 
scheme, sufficient labeled training data is the prerequisite of 
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satisfactory classification performance. However, it is really 
expensive to manually label a large volume of video 
sequences. Thus, we propose a semi-supervised Expectation-
Maximization (SS-EM) algorithm to classify the human 
activities on the limited labeled data. 

 Main contributions of the paper are summarized as: (1) 
classification of normal and anomalous activities in non-
overlapping FOVs using appearance similarity and travel 
time; (2) semi-supervised learning to identify anomalous 
activities in the activity behavior space; (3) mixture of 
Gaussian-based statistical model of appearance similarity for 
correspondence.  

The paper is organized as follows: first, we discuss the 
color histogram-based appearance similarity and its 
statistical model based on Gaussian mixture model (GMM) 
in 2.1, followed by the introduction of the SS-EM algorithm 
in 2.2. Then, we present the anomalous human activity 
classification method by using the appearance similarity and 
travel time, and the SS-EM approach on the limited labeled 
training data. In Section 3, we show extensive simulation 
results for abnormal activity classification and the real-life 
experiment results are also presented. Finally, we conclude 
the paper in Section 4. 

 
2. TECHNICAL APPROACH 

The technical approach proposed in this paper is illustrated 
in Fig. 1. Like other learning-based classification methods, it 
has “training” and “testing” phases. In training, the network 
topology and appearance similarity distributions between 
different nodes are provided. The appearance similarity and 
travel time are first extracted from the training sequence. 
Due to the cost of manual labeling, only a limited number of 
labeled data and a large portion of unlabeled data are used in 
the SS-EM algorithm to estimate the GMM. The SS-EM 
algorithm is followed by a Bayesian classifier, and the 
classification results are evaluated with the ground truth 
which are fed back to the SS-EM to tune the parameters. 
The SS-EM is terminated if the fitness criterion is met. 
Otherwise, the iteration continues. In the testing, the 
estimated GMM is used by the Bayesian classifier to tell the 
anomalous from the normal activities. 

2.1. Feature Extraction 
Suppose the link from node i to node j is established in 

the network topology [3][6], and we are observing human 
activities of this specific link. By using existing motion 
detection and tracking techniques, we observe objects 
departing at node i and arriving at node j as temporal 
sequences Xi(t) and Yj(t), respectively. The travel time 
variable  is calculated as the difference between them. 

AX,i(t) and AY,j(t) are the observed appearances in the 
departure and arrival sequences, respectively. The color 
histograms in the hue and saturation space, i.e., h and s, 
respectively, are calculated on the normalized appearances 
AX,i(t) and AY,j(t), respectively [6]. We use a k-component 
mixture of Gaussian distributions to model the color 
histogram similarity between the two appearances: 

 
(1) 

 
where k is the number of components, m is the weight, m 
and m

2 are the mean and variance of the mth Gaussian 
component, and “X Y” means that they correspond to the 
same subject.  
 
2.2. Semi-supervised EM Algorithm 

Transductive learning combines both labeled and 
unlabeled data in training. In this scheme, labeled data 
provide the initialization and validation of the classifier, and 
the unlabeled data capture the statistical characteristics of 
the dataset and boosts the classifier. Various transductive 
learning methods have recently emerged. One approach 
dealing with labeled and unlabeled data from Gaussian 
mixture model is to modify the mixture log-likelihood 
function as the combination of two terms: one for labeled 
data and the other for unlabeled ones. Dong and Bhanu [1] 
present a short-term and long-term semi-supervised EM (SS-
EM) based concept learning algorithm for content-based 
image retrieval. The assumption of Gaussian distribution 
provides good results for image retrieval. Our approach 
employs the SS-EM algorithm presented in [1].  

First, let we briefly recall the procedures of the EM 
algorithm, in which the Expectation (E) and Maximization 
(M) steps are iterated until the termination. 
•  E-step: Compute the conditional expectation of the 

complete log-likelihood, given X  and the current 

estimate ( )tθ̂ . We priorly know some binary component-

indicator vectors Z such that: zji = 1, if i = h; or zji = 0, 
otherwise, where i = 1, 2, …, c. h denotes the hth 

component in the mixture of Gaussians. The result is the 
so-called Q-function: 

(2) 
In this equation, because of the linearity of log p(X,Y  | ) 
with respect to Y , we only need to compute the conditional 

expectation Z   E[Y|X , ( )tθ̂ ].  
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Figure 1. The dataflow diagram of the proposed SS EM-based 
human activity classification method. 
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•   M-step: Update the parameter estimates in the case of ML 
estimation according to: 

 
      

In SS-EM, the log-likelihood function is modified to 
incorporate both the labeled and unlabeled data: 

 
(4) 

 
 
In the above equation, for the unlabeled data, the 

probability of an individual data point (the first term) is the 
sum of total probability over all classes. However, for the 
labeled data, the generating component h is already given 
and we just need to refer to the corresponding one (as in the 
second term) instead of all mixture components. The 
probabilistic indicator vector for the unlabeled data Zji (for j 
∈Ju) is the expected values according to the current 
parameter estimate ( )tθ . 

Next we describe a weighted SS-EM method where the 
influence of the unlabeled data is modulated in order to 
control the extent to which EM performs unsupervised 
clustering. A new parameter  is introduced into the log-
likelihood function which balances the contributions of the 
unlabeled and labeled data to parameter estimation: 

 
(5) 

 
 
Notice that when  is close to zero, the unlabeled data 

will have little influence on the parameter estimation. When 
 is close to one, each unlabeled data point will have almost 

the same influence as the labeled data, which is the same as 
the traditional EM algorithm. 

 
2.3. Anomalous Activity Classification 

In this section, we will employ the SS-EM algorithm 
combined with a naïve Bayes classifier for anomalous 
activity classification. When the naïve Bayes classifier is 
given just a small set of labeled training data, classification 
accuracy will suffer because variance in the parameter 
estimates of the generative model will be high. However, by 
augmenting this small labeled set with a large set of 
unlabeled data and combining these two with the framework 
of SS-EM, we can improve the parameter estimates and the 
classification accuracy significantly. 

The object similarity distribution Psimilarity(S|X,Y), which 
has already been obtained in topology inference [6], can be 
combined with the transition time distribution P( ) to 
identify the anomalous activity patterns. Under the 
assumption that the object similarity S and the transition 
time  are independent, the joint distribution of object 
appearance similarity and transition time can be expressed as 
the product of Psimilarity(S) and P( ): 

 

The anomaly activity patterns under study include 
normal, break-in, stay and sudden appearance/ 
disappearance, which are represented by the four 
components in the GMM. The class ‘sudden 
appearance/disappearance’ means that either the subject 
never shows up at node i before appearing at node j or it 
never show up at node j after leaving node i. We do not 
distinguish between sudden appearance and sudden 
disappearance since both of them are of the same behavior 
type and distributed in the same area of the activity behavior 
space. The other ‘suspicious’ activities, such as break-in and 
stay, indicates that the subjects spend too much or too little 
time w.r.t. the expected transition time .  

The GMM parameters are learned on the labeled and 
unlabeled data by using the SS-EM algorithm described 
before. Then, in the testing phase, the estimated Gaussian 
mixture model is used by the naïve Bayes classifier for 
anomalous activity classification. 
 

3. EXPERIMENTAL RESULTS 
3.1. Simulations 

The simulation is based on a priori learned network 
topology shown in Fig. 2 (a). The simulated network has 18 
departure/arrival nodes and 13 valid directed links. Some 
nodes, e.g., node 11, function as both ‘departure’ and 
‘arrival.’ The traffic data of 100 points is generated by a 
Poisson(0.1) departure process, and the transition time 
follows Gamma distributions, e.g., Gamma(100, 5), 
Gamma(25, 2.5), etc. For simplicity, we only employ the 
appearance similarity and its probability Papp is modeled by 
a univariate Gaussian. 

The simulated feature points in the activity behavior 
space are shown in Fig. 2 (b). We can find the four areas 
(marked as different colors) corresponding to the four 
different human activities. However, the distribution 
between these four areas is not balanced, i.e., most of the 
data points (~90%) are concentrated in the ‘normal’ region. 
It complies with the real-life environment. The first three 
classes are compact and their corresponding Gaussian 
components in GMM match them very well; however, the 
class sudden appearance/disappearance has a rough shape 
of Gaussian spanning over a large area because of the sparse 
data points in this class. 

We randomly split the whole dataset for training and 
testing: 50% for training and 50% for testing. Among the 
training data, 30% are manually labeled and the other 70% 
remain unlabeled. The Gaussian mixture model estimated by 
the SS-EM algorithm is shown in Fig. 2(c). We can find that 
it capture the ground-truth GMM. The classification 
accuracy of the Bayes classifier is 99%. For comparison, we 
run an unsupervised k-means clustering algorithm on the 
same dataset. The number of clusters is initialized as four 
and the identified centers of the clusters are marked in Fig. 2 
(d). We can find that they deviate significantly from the 
ground truth centers because of the unbalanced distribution 
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of data points and the unsupervised learning style. Its 
classification accuracy is only about 27%. 

 
3.2. Real-life Experiments 

We construct a similar camera network overseeing one 
floor of a campus building, in which three are monitoring 
doors, one at the corner of the aisle and one covering part of 
the patio. The camera layout and network topology are 
shown in Fig. 3.  

The observed video sequences with subjects arriving at 
difference nodes (i.e., FOVs of cameras) are displayed in 
Fig. 4. In our experiment, there are totally ten human 
subjects walking in the scene, and six times in-and-out of the 
FOVs for each subject. According to the footage, there are 
ten occurrences of anomaly: three break-in, three stay and 
four sudden appearance/disappearance. Our proposed 
approach has identified all these anomalous activities, i.e., 
the true alarm rate of 100%. Meanwhile, there are two false 
anomalous cases, shown in Fig. 4(b)(c), mainly due to the 
low resolution of the observations and the lack of strong 
biometric traits. The false alarm rate is 2/(60-10) = 4%. 

 
4. CONCLUSIONS 

This paper proposes to use the appearance similarity and 
travel times observed from much fewer cameras with non-
overlapping FOVs to classify the human activities into four 
different classes: normal, break-in, stay, and sudden 
appearance/disappearance. To alleviate the problem of 
limited labeled training data, we propose to use the SS-EM 
algorithm for anomalous activity classification. The normal 

and abnormal activities observed in the simulated and real-
life multi-camera network are tested. 
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Figure 3. (Left) Experiment setup of the camera network showing their 
locations, FOVs (shade areas), and entry/exit points of the cameras (red 
ellipses), and (right) the topology of the real-life camera network.  

(b) Camera 3: four subjects entering the FOV. Note that the third from the left 
is falsely identified as other objects. It is a case of sudden appearance.  

Figure 4. The example frames captured by different cameras in the 
camera network with people entering the FOVs.  

(a) Camera 1: four subjects entering the FOV. 

(c) Camera 5: four subjects entering the FOV. The one in the far right is 
falsely identified as another object. It is a case of sudden appearance. 

Figure 2. (a) The topology of the simulated camera network with 25 nodes and 13 directed links; (b) The simulated 
feature points in the activity behavior space; (c) the estimated Gaussian Mixture Model by the semi-supervised EM 
algorithm, which captures the property of the simulated data; and (d) the estimated class centers by using the 
unsupervised K-means clustering, which severely deviate from the true class centers. 
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