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Abstract

In this paper, we investigate human repetitive activity
properties from thermal infrared imagery, where human
motion can be easily detected from the background regard-
less of lighting conditions and colors of the human sur-
faces and backgrounds. We employ an efficient spatio-
temporal representation for human repetitive activity recog-
nition, which represents human motion sequence in a sin-
gle image while preserving some temporal information. A
statistical approach is used to extract features for activity
recognition. Experimental results show that the proposed
approach achieves good performance for human repetitive
activity recognition.

1 Introduction

Human repetitive activity involves a regularly repeat-
ing sequence of motion events such as walking, running
and jogging. Most existing human activity recognition ap-
proaches detect human motion in visible spectrum. How-
ever, it is very likely that some part of human body or cloth-
ing has similar color as background colors. In this case, hu-
man motion detection usually fails on this part. Moreover,
the existence of shadows is a problem in visible spectrum.
In addition, sensors in visible spectrum do not work under
low lighting conditions such as night or indoor environment
without lighting.

To avoid the disadvantages of using sensors in visible
spectrum, we investigate the possibility of using the ther-
mal infrared (long wave infrared) sensor for human activ-
ity analysis. Unlike a regular camera which records re-
flected visible light, a long wave (8 − 12µm) infrared cam-
era records electromagnetic radiation emitted by objects in
a scene as a thermal image whose pixel values represent
temperature. In a thermal image that consists of humans
in a scene, human silhouettes can be easily extracted from
the background regardless of lighting conditions and colors
of the human surfaces and backgrounds, because the tem-
peratures of the human body and background are different
in most situations [3]. Figure 1 shows an example of hu-

man walking at different time in a day recorded from a ther-
mal infrared sensor: noon (first row), late afternoon (sec-
ond row) and night (third row). There is no obvious shadow
introduced in the thermal infrared images recorded at noon
and late afternoon. The thermal images also provide enough
contrast between the human and the background at night.

In this paper, we investigate human repetitive activities in
thermal infrared imagery. First, human motion is detected
and human silhouettes are extracted from the background.
Then, we employ an efficient spatio-temporal representa-
tion, Gait Energy Image (GEI), for human repetitive activity
recognition. Unlike other representations which consider
motion as a sequence of templates (poses), GEI represents
human motion sequence in a single image while preserving
some temporal information. Finally, we use a statistical ap-
proach to extract features from GEI for activity recognition.

2 Related Work

2.1 Object Detection in Thermal Infrared
Imagery

Images from different kind of sensors generally have dif-
ferent pixel characteristics due to the phenomenological dif-
ferences between the image formation process of the sen-
sors. In recent years, some approaches have already been
proposed to detect and recognize object in thermal infrared
imagery, especially in the field of remote sensing and auto-
mated target recognition.

Object detection in thermal infrared imagery has been
widely used in remote sensing. Holland and Yan [11]
propose a method to quantitatively measure ocean surface
movement using sequential 10.8µm-band thermal infrared
satellite images. Ocean thermal pattern features are selected
by detecting and mapping gradients and at the same time
discriminating between the water surface, land, and clouds.
The pattern features are then tracked by a constrained corre-
lation based feature recognition scheme in a subsequent im-
age. Abuelgasim and Fraser [1] investigate the applicabil-
ity of NOAA-16/AVHRR (N-16) satellite data for detecting
and mapping active wildfires across North American for-
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Figure 1. An example of human walking at different time in a day recorded from a thermal infrared
sensor: noon (first row), late afternoon (second row) and night (third row).

est ecosystems. Their algorithms exploit both the multi-
spectral and thermal information from the AVHRR daily
images. Riggan and Hoffman [18] discussed the applica-
tions of a thermal imaging radiometer in field trials. The
system has successfully demonstrated remote detection of a
small spot fire, landscape temperature mapping; and quan-
titative, unsaturated measurements of flame radiance during
large-scale open burning. Martinez et. al [14] develop a
three-dimensional thermal model to study the effect of the
presence of landmines in the thermal signature of the bare
soil. In their approach, landmines are regarded as a thermal
barrier in the natural flow of the heat inside the soil, which
produces a perturbation of the expected thermal pattern on
the surface. Surface-laid and shallowly buried landmines
are detected and classified from measured infrared images
by studying these perturbations.

Object detection in thermal infrared imagery has also
been widely used in automated target recognition in surveil-
lance environments, especially for human target detection.
Andreone et. al [2] propose an approach for detecting ve-
hicles in thermal infrared imagery. Initially the attention
is focused on portions of the image that contains hot ob-
jects only. The result is further investigated exploiting spe-
cific vehicle thermal characteristics. Arlowe [3] develop an
automatic detection systems based on the thermal contrast
and motion of human intruders. The conditions and energy
transfer mechanisms that lead to difficult thermal detection
are discussed in his work. The heat flux balance equation
can be used in an iterative computer program to predict the

surface temperatures of both the background and the tar-
get for human intruder detection. Ginesu et. al [8] pro-
pose a novel method to detect foreign bodies, which are not
detectable using conventional methods, by inspecting food
samples using thermographic images. Pavlidis et. al [15]
propose a method for detecting suspects engaged in ille-
gal and potentially harmful activities in or around critical
military or civilian installations. The use of thermal image
analysis are investigated to detect at a distance facial pat-
terns of anxiety, alertness, and/or fearfulness. Yoshitomi et.
al [21] develop a face identification approach by thermal
image analysis. The front-view face is first normalized in
terms of location and size, the temperature distribution is
then measured as well as the locally averaged temperature
and the shape factors of face. These features are used for
supervised classification by neural network.

2.2 Human Activity Recognition

In recent years, various approaches have been proposed
for human activity recognition. These approaches generally
fall under two major categories: model-based approaches
and model-free approaches.

When people observe human motion patterns, they not
only observe the global motion properties, but also inter-
pret the structure of the human body and detect the motion
patterns of local body parts. The structure of the human
body is generally interpreted based on their prior knowl-
edge. Model-based activity recognition approaches focus
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on recovering a structural model of human motion, and the
motion patterns are then generated from the model para-
meters for activity recognition. Guo et. al [9] represent
the human body structure in the silhouette by a stick fig-
ure model. The human motion characterized by a sequence
of the stick figure parameters are used as input of a neural
network for classification. Fujiyoshi and Lipton [7] analyze
the human motion by producing a star skeleton determined
by extreme point estimation from the silhouette boundaries
extracted. These cues are used to recognize human activi-
ties such as walking or running. Sappa et. al [19] develop a
technique for human motion recognition based on the study
of feature points’ trajectories. Peaks and valleys of points’
trajectories are first detected to classify human activity us-
ing prior knowledge of human body kinematics structure
together with the corresponding motion model. In model-
based approaches, the accuracy of human model reconstruc-
tion strongly depends on the quality of the extracted human
silhouette in these model-based approaches. In the presence
of noise, the estimated parameters may not be reliable.

Model-free approaches make no attempt to recover a
structural model of human motion. Polana and Nelson [16]
analyze human repetitive motion activity based on bottom
up processing, which does not require the prior identifi-
cation of specific parts. Motion activity is recognized by
matching against a spatiotemporal template of motion fea-
tures. Rajagopalan and Chellappa [17] develop a higher-
order spectral analysis-based approach for detecting peo-
ple by recognizing repetitive motion activity. The stride
length is determined in every frame, and the bispectrum
which is the Fourier transform of the triple correlation is
used for recognition. Sarkar and Vega [20] discriminate be-
tween motion types based on the change in the relational
statistics among the detected image features. They use the
distribution of the statistics of the relations among the fea-
tures for recognition. Davis [5] proposes a probabilistic
reliable-inference framework to address the issue of rapid-
and-reliable detection of human activities using posterior
class ratios to verify the saliency of an input before com-
mitting to any activity classification..

3 Human Repetitive Activity Representation

Human repetitive activity is a cyclic motion where hu-
man motion repeats at a stable frequency. Assuming that
the order of poses in a specific repetitive activity is the same
among different people, it is possible to compose a spatio-
temporal template in a single image instead of an ordered
image sequence as usual. The fundamental assumptions
made here are: (a) the order of poses in different cycles is
the same, i.e., limbs move forward and backward in a sim-
ilar way among normal people; (b) differences exist in the
phase of poses in a motion cycle, the extend of limbs, and
the shape of the torso, etc.
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Figure 2. Frequency and phase estimation of
human walking.

3.1 Human Silhouette Extraction

The raw silhouettes are extracted by a simple back-
ground subtraction method. This method is relatively easy
to implement and requires less computational time. Once a
Gaussian model of the background is built using sufficiently
large number of frames, given a foreground frame, for each
pixel, we can estimate whether it belongs to the background
or foreground by observing the pixel value compared with
the mean and standard deviation values at this pixel.

The raw silhouettes are further processed by size nor-
malization (proportionally resizing each silhouette image
so that all silhouettes have the same height) and horizontal
alignment (centering the upper half silhouette part with re-
spect to its horizontal centroid). In a so-obtained silhouette
sequence, the time series signal of lower half silhouette part
size from each frame indicates the motion frequency and
phase information. The obtained time series signal consists
of few cycles and lots of noise, which lead to sidelobe effect
in the Fourier spectrum. To avoid this problem, we estimate
the motion frequency and phase by maximum entropy spec-
trum estimation [13] from the obtained time series signal as
shown in Figure 2.

3.2 Gait Energy Image

Given the preprocessed binary human silhouette images
Bt(x, y) at time t in a sequence, the grey-level gait energy
image (GEI) is defined as follows

G(x, y) =
1
N

N∑
t=1

Bt(x, y) (1)

where N is the number of frames in the complete cycle(s) of
a silhouette sequence, t is the frame number in the sequence
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Figure 3. Examples of normalized and aligned silhouette frames in different human motion se-
quences. The rightmost image in each row is the corresponding gait energy image (GEI).

(moment of time), x and y are values in the 2D image co-
ordinate. Figure 3 shows the sample silhouette images in a
motion cycle of different activities of the same person, and
the right most image is the corresponding GEI. As expected,
GEI reflects major shapes of silhouettes and their changes
over the motion cycle. We refer to it as gait energy image
because: (a) each silhouette image is the space-normalized
energy image of human walking at this moment; (b) GEI is
the time-normalized accumulative energy image of human
walking in the complete cycle(s); (c) a pixel with higher in-
tensity value in GEI means that human walking occurs more
frequently at this position (i.e., with higher energy).

Bobick and Davis [4] propose motion-energy image
(MEI) and motion-history image (MHI) for human move-
ment type representation and recognition.

MEI is a binary image which represents where motion
has occured in an image sequence:

Eτ (x, y, t) = ∪τ−1
i=0 D(x, y, t − i), (2)

where D(x, y, t) is a binary sequence indicating regions of
motion, τ is the duration of time, t is the moment of time, x
and y are values of 2D image coordinate.

MHI is a grey-level image which represents how motion
in the image is moving:

Hτ (x, y, t) =
{

τ, if D(x, y, t) = 1;
max{0,Hτ (x, y, t − 1) − 1}, otherwise.

(3)
Both MEI and MHI are vector-images where the vector

value at each pixel is a function of the motion properties at
this location in an image sequence. As compared to MEI

and MHI, GEI targets specific repetitive activity representa-
tion, which has been successfully used in human identifica-
tion by gait [10].

3.3 GEI Properties

In comparison with the activity representation by binary
silhouette sequence, GEI representation saves both storage
space and computation time for recognition and is less sen-
sitive to silhouette noise in individual frames. Consider
a noisy silhouette image Bt(x, y) that is formed by the
addition of noise ηt(x, y) to an original silhouette image
ft(x, y), that is, Bt(x, y) = ft(x, y) + ηt(x, y), where we
assume that at every pair of coordinates (x, y) the noise
at different moments t is uncorrelated and identically dis-
tributed. Under these constraints, we further assume that
ηt(x, y) satisfies the following distribution:

ηt(x, y) =
{

η1t(x, y), if ft(x, y) = 1
η2t(x, y), if ft(x, y) = 0 (4)

where

η1t(x, y): P{ηt(x, y) = −1} = p, P{ηt(x, y) = 0} = 1 − p

η2t(x, y): P{ηt(x, y) = 1} = p, P{ηt(x, y) = 0} = 1 − p.

We have

E{ηt(x, y)} =
{−p, if ft(x, y) = 1

p, if ft(x, y) = 0 (5)

and

σ2
ηt(x,y) = σ2

η1t(x,y) = σ2
η2t(x,y) = p(1 − p). (6)
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Given a walking cycle with N frames where ft(x, y) = 1
at a pixel (x, y) only in M frames, we have

G(x, y) =
1
N

N∑
t=1

Bt(x, y)

=
1
N

N∑
t=1

ft(x, y) +
1
N

N∑
t=1

ηt(x, y)

=
M

N
+ η̄(x, y).

Therefore, the noise in GEI is

η̄(x, y) =
1
N

N∑
t=1

ηt(x, y)

=
1
N

[
M∑

t=1

η1t(x, y) +
N∑

t=M+1

η2t(x, y)

]
.

We have

E{η̄(x, y)} =
1
N

[
M∑

t=1

E{η1t(x, y)}

+
N∑

t=M+1

E{η2t(x, y)}]

=
1
N

[M(−p) + (N − M)p]

=
N − 2M

N
p

and

σ2
η̄(x,y) = E{[η̄(x, y) − E{η̄(x, y)}]2}

=
1

N2
E{[

M∑
t=1

[η1t(x, y) − E{η1t(x, y)}]

+
N∑

t=M+1

[η2t(x, y) − E{η2t(x, y)}]]2}

=
1

N2
[Mσ2

η1t(x,y) + (N − M)σ2
η2t(x,y)]

=
1
N

σ2
ηt(x,y).

Therefore, the mean of the noise in GEI varies between −p
and p depending on M while its variability (σ2

η̄(x,y)) de-
creases. If M = N at (x, y) (all ft(x, y) = 1), E{η̄(x, y)}
becomes −p; if M = 0 at (x, y) (all ft(x, y) = 0),
E{η̄(x, y)} becomes p. At the location (x, y), the mean
of the noise in GEI is the same as that in the individual sil-
houette image, but the noise variance reduces so that the
probability of outliers is reduced. If M varies between 0
and N at (x, y), E{η̄(x, y)} also varies between p and −p.

Therefore, both the mean and the variance of the noise in
GEI are reduced compared to the individual silhouette im-
age at these locations. At the extreme, the noise in GEI has
zero mean and reduced variance where M = N/2. As a
result, GEI is less sensitive to silhouette noise in individual
frames.

4 Repetitive Activity Recognition

In this section, we describe the proposed repetitive ac-
tivity recognition approach using gait energy image. In the
training procedure, GEI templates are generated from the
original silhouette sequences. A component and discrimi-
nant analysis is them performed on the training templates
for feature extraction. Human activity recognition is based
on the extracted features.

Given a series of training GEI templates for each ac-
tivity, the problem of their excessive dimensionality oc-
curs. To reduce their dimensionality, there are two classi-
cal approaches of finding effective linear transformations by
combing features - Principal Component Analysis (PCA)
and Multiple Discriminant Analysis (MDA). As described
in [6], PCA seeks a projection that best represents the data
in a least square sense, while MDA seeks a projection that
best separates the data in a least-square sense. Huang et al.
[12] combine PCA and MDA to achieve the best data repre-
sentation and the best class separability simultaneously. In
this paper, the learning procedure follows this combination
approach.

Given n d-dimensional training templates
{x1,x2, ...,xn}, PCA minimizes the criterion function

Jd′ =
n∑

k=1

||(m +
d′∑

i=1

akiei) − xk||2, (7)

where d′ < d, m = 1
n

∑n
k=1 xk, and {e1, e2, ..., ed′} are

a set of unit vectors. Jd′ is minimized when e1, e2, ..., and
ed′ are the d′ eigenvectors of the scatter matrix S having the
largest eigenvalues, where

S =
n∑

k=1

(xk − m)(xk − m)T . (8)

The d′-dimensional principal component vector yk is ob-
tained from the d-dimensional GEI template xk by multi-
plying the transformation matrix [e1, ..., ed′ ]:

yk = [a1, ..., ad′ ]T = [e1, ..., ed′ ]T xk, k = 1, ..., n. (9)

where n is the number of the expanded GEI templates from
all people in the training dataset.

Although PCA finds components that are useful for rep-
resenting data, there is no reason to assume that these com-
ponents must be useful for discriminating between data in
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Noon Late Afternoon Night

Figure 4. Thermal images of the background at different time in a day recorded from the thermal
infrared sensor: noon, late afternoon and night, each of which is normalized by the temperature
range individually.

different classes because PCA does not consider the class
label of training templates. Multiple discriminant analysis
(MDA) seeks a projection that are efficient for discrimina-
tion. Suppose that the n d′-dimensional transformed train-
ing templates {y1,y2, ...,yn} belong to c classes. MDA
seeks a transformation matrix W that maximizes the ratio
of the between-class scatter SB to the within-class scatter
SW :

J(W ) =
|S̃B |
|S̃W | =

|WT SBW |
|WT SW W | . (10)

The within-class scatter SB is defined as

SW =
c∑

i=1

Si, (11)

where
Si =

∑
y∈Di

(y − mi)(y − mi)T (12)

and
mi =

1
ni

∑
y∈Di

y, (13)

where Di is the training template set that belongs to the ith
class and ni is the number of templates in Di. The within-
class scatter SB is defined as

SB =
c∑

i=1

ni(mi − m)(mi − m)T , (14)

where
m =

1
n

∑
y∈D

y, (15)

and D is the whole training template set. J(W ) is maxi-
mized when the columns of W are the generalized eigen-
vectors that correspond to the largest eigenvalues in

SBwi = λiSW wi. (16)

There are no more than c − 1 nonzero eigenvalues, and the
corresponding eigenvectors v1,...,vc−1 form transformation

matrix. The (c− 1)-dimensional multiple discriminant vec-
tor zk is obtained from the d′-dimensional principal com-
ponent vector yk by multiplying the transformation matrix
[v1, ...,vc−1]:

zk = [v1, ...,vc−1]T yk, k = 1, ..., n. (17)

The obtained multiple discriminant vectors compose the
feature database for activity recognition.

Assuming that the obtained feature vectors in each class
are Gaussian distributed with the same covariance matrix,
Bayesian classifier becomes minimum Euclidean distance
classifier that is used for activity recognition.

5 Experimental Results

We have recorded real thermal image data of human ac-
tivities by a FLIR SC2000 long-wave infrared camera in
an outdoor environment. The image size is 240 × 320.
The field-of-view of the camera is fixed during a human
walking. Repetitive activities of five people are recorded
at different time: noon (four people), late after noon (three
people) and night (two people). The corresponding back-
grounds are shown in Figure 4. Each background is nor-
malized by the temperature range individually.

Each person was asked to slow walk, fast walk and run
forward and backward along the fronto-parallel direction at
each time. Therefore, there are totally a set of six sequences
for each person at each time: two slow walking, two fast
walking and two running. Four people are recorded at noon,
three people are recorded at late afternoon, and 2 people are
recorded at night. Three data sets recorded at noon are used
for training, and other data sets are used for testing. Figure
5 shows GEI Examples of the 9 data sets (54 human motion
sequences) used in our experiments. An observation from
this figure is that the silhouette extraction performance at
late afternoon is better than that at noon and night. This
means that the temperature contrast between the human ob-
ject and the background is larger at late afternoon. The mo-
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Noon

Training Data at
Noon

Training Data at
Noon

Testing Data at
Noon

Testing Data Late
Afternoon

Testing Data at
Late Afternoon

Testing Data at
Late Afternoon

Testing Data at
Night

Testing Data at
Night

Figure 5. GEI Examples of the 54 human motion sequences used in our experiments.
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tion of the trees in the background also contribute to the
silhouette extraction performance in some frames.

The goal of our activity recognition here is to discrim-
inate human walking or running regardless of their speed
(slow or fast walking). In the recorded data, the speed in
some fast walking sequences are equivalent or faster than
that in some running sequences. Therefore, the speed is not
appropriate for recognition walking or running. We employ
the approach of combining PCA and MDA for feature ex-
traction.

The size of the GEI template used in this paper is
128 × 88. Each GEI template is first converted to a column
vector with d = 11264 dimensions as the input to PCA.
The high dimension is then reduced to d′ = 4 by PCA as
shown in Equation (9). The 4-dimensional vectors are used
as the input to the MDA, and the final feature vectors are
of c − 1 = 1 dimension as shown in Equation (17), where
c = 2 is the number of classes. The recognition perfor-
mance on training data and testing data are all 100%. This
demonstrates that the proposed approach achieves good per-
formance for human repetitive activity recognition in the
limited data set. Its performance will be further explored in
a larger data set which is under construction.

6 Conclusions

In this paper, we use a spatio-temporal gait representa-
tion, called the Gait Energy Image (GEI), for human repeti-
tive activity recognition. Human motion is detected in ther-
mal infrared imagery, which provide good contrast between
human objects and backgrounds regardless of lighting con-
ditions and colors of the human surfaces and backgrounds.
Unlike other motion representations which consider gait as
a sequence of templates (poses), GEI represents human mo-
tion sequence in a single image while preserving temporal
information. A statistical approach is used to extract fea-
tures from GEI for activity recognition. Preliminary exper-
imental results show that the proposed approach achieves
good performance for human repetitive activity recognition.
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