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Abstract

Ear is a new class of relatively stable biometric that is
invariant from childhood to early old age (8 to 70). It is not
affected with facial expressions, cosmetics and eye glasses.
In this paper, we introduce a two-step ICP (Iterative Clos-
est Point) algorithm for matching 3D ears. In the first step,
the helix of the ear in 3D images is detected. The ICP algo-
rithm is run to find the initial rigid transformation to align
a model ear helix with the test ear helix. In the second step,
the initial transformation is applied to selected locations
of model ears and the ICP algorithm iteratively refines the
transformation to bring model ears and test ear into best
alignment. The root mean square (RMS) registration error
is used as the matching error criterion. The model ear with
the minimum RMS error is declared as the recognized ear.
Experimental results on a dataset of 30 subjects with 3D ear
images are presented to demonstrate the effectiveness of the
approach.

1. Introduction

Ear is a viable new class of biometrics since the ear has
desirable properties such as universality, uniqueness and
permanence [9, 10]. Although it has certain advantages over
other biometrics, it has received little attention compared to
other popular biometrics such as face, fingerprint and gait.
For example, ear is rich in features; it is a stable structure
which does not change with the age; it doesn’t change its
shape with facial expressions, cosmetics and hair styles.

In recent years, some approaches have been developed
for the ear recognition from 2D images. Burge and Burger
[4] proposed an adjacency graph, which is built from the
Voronoi diagram of the ear’s edge segments, to describe the
ear. Ear recognition is done by subgraph matching. Hur-
ley et al. [8] applied force field transform to ear images
and wells and channels are shown to be invariant to affine
transformations. Chang et al. [6] used principal component
analysis to ear images. All of these work for ear recogni-
tion have used 2D intensity images and therefore the perfor-
mance of their systems is greatly affected by imaging condi-
tions such as lighting and shadow. However currently avail-

able range sensors can directly provide us 3D geometric in-
formation which is insensitive to above imaging problems.
Therefore, it is desirable to design a human ear recognition
system from 3D side face images obtained at a distance. In
fact, different methods to design biometrics system based
on 3D data have been addressed [2, 3, 5, 7, 11, 12, 14].

In this paper, we describe a two-step ICP (Iterative Clos-
est Point) procedure for matching 3D ears. ICP algorithm is
to match a data shape � to a model shape � by iteratively
minimizing the distance between corresponding pairs. In
the training phase, the helixes of model ears in 3D images
are extracted and saved. In the testing phase, the helix of the
test ear in 3D image is detected. For each model ear helix,
we run the ICP algorithm to find the initial rigid transforma-
tion which aligns a model ear helix with the test ear helix.
After this, we have a set of rigid transformations for each
model-test pair. Then by applying the initial rigid transfor-
mation obtained previously to selected control points of the
model ear, we run ICP to improve the transformation which
brings model ear and test ear into best alignment, for every
model-test pair. The root mean square (RMS) registration
error is used as the matching error criterion. The model ear
with the minimum RMS error is declared as the recognized
ear.

The rest of the paper is organized as follows. Section
2 describes our approach to automatic detection of ear he-
lixes and matching ears. Section 3 provides the experimen-
tal results to demonstrate the effectiveness of our approach.
Finally, Section 4 presents conclusions.

2. Technical approach

The system block diagram is illustrated in Fig. 1. Our
approach has three main steps: 1) automatic ear helix detec-
tion; 2) first-step ICP to align the model ear helix with the
test ear helix and to obtain the initial rigid transformation;
3) second-step ICP to refine the transformation.

2.1 Ear helix detection

To detect ear helix in intensity images is not a trivial task.
However in range images there are strong depth discontinu-
ities around the ear helix. The step edge magnitude, de-
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Figure 1. System diagram.

noted by � � � � � , is calculated as the maximum distance in
depth between the center point and its neighbors in a small
window [15]. � � � � � can be formulated as follows:

� � � � � � � � � 	 
 � �  � � � � � � 	 � � � � � � � � � � �
(1)� � � � � 	 � � � � � � � � � � � 	 � �

where � is the width of the window and � � � � � 	
is the �

coordinate of the point � � � � 	
. To get the step edge magni-

tude image, a � � � window is translated over the origi-
nal ear range image and the maximum distance calculated
from (1) replaces the pixel value of the pixel covered by the
center of the window. The step edge magnitude is thresh-
olded to get a binary edge image which is shown in Fig.
2(b), while the original ear range image is shown in Fig.
2(a). It’s inevitable that we also get the unwanted edge
segments, for instance, around the ear antihelix. We pro-
ceed to do edge thinning and linking and remove small edge
segments; the result image is shown in Fig. 2(c). Further-
more, since we take the left ear range image and know the
ear helix lies in the right side of image, we can remove
edge segments which do not belong to the helix and the
final detected helix of ear is shown in Fig. 2(d). The ex-
tracted ear helix is represented by a set of 3D coordinates� 
 � �  � � 	 � � � � 	 � � � � 	 	 � � � 
 � � � � � � � � �  

where
�  

is the
number of points on the detected ear helix. We repeat the
same procedure for each model ear and get a set of 3D seg-

ments
� � ! � � 
 � � � � � � � � "  �

where
"  

is the number of
model ears.

(a) (b) (c) (d)

Figure 2. Steps to automatically extract the
helix of ear.

2.2 First-Step ICP

We can detect test ear helix using the same previous step.
The detected test ear helix is represented by a set of 3D co-
ordinates # 
 � �  � � 	 � � � � 	 � � � � 	 	 � � � 
 � � � � � � � � � � where� � is the number of points on the detected test ear helix.
Given two sets of 3D points

� !
and # , we like to find a

rigid transformation $ % to align them such that the mean
square error & 
 ' () * + � $ % � � ! ) 	 � # ) � ,

is minimized. ICP
algorithm developed by Besl and Mckay [1] is well-known
method to align 3D shapes. However ICP requires that ev-
ery point in one set have a corresponding point on the other
set, we can’t guarantee that detected ear helix satisfy this
requirement. Therefore, we use a modified ICP algorithm
presented by Turk [13] to register two helixes. We call this
step ICP first-step ICP. The steps of modified ICP algorithm
to register a test shape � to a model shape � are:

1) Initialize the rotation matrix - . and translation vector
$ . .

2) Given each point in � , find the closest point in � .
3) Discard pairs of points which are too far apart.
4) Find the rigid transformation ( - , $ ) such that & is

minimized.
5) Apply the transformation ( - , $ ) to � .
6) Goto step 2) until the difference

� & / � & / 0 + �
in two

successive steps falls below a threshold 1 or the maximum
number of iterations is reached.

By initializing the rotation matrix - . and translation
vector $ . to the identity matrix and zero vector respectively,
we run ICP iteratively and finally get the rotation matrix - +
and translation vector $ + , which brings the model ear he-
lix and test ear helix into alignment. - + and $ + will be
used as the initial transformation for the second-step ICP.
The alignment is shown in Fig. 3. The detected model ear
helix is marked by red pluses; the detected test ear helix is
marked by black points; the model ear helix after registra-
tion is marked by blue circles. From Fig. 3, we can clearly
see that the model ear helix is brought closer to the test ear
helix. We apply the transformation - + and $ + to the model
ears and examples of model ears coarsely aligned to test
ears are shown in Fig. 4 for model-test pairs 5, 10, 18 and
19. Furthermore, if we use the RMS errors from first-step
ICP as matching error criterion, we would make 18 errors
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out of 30. Therefore, it’s necessary to do second-step ICP to
improve the transformation, which can be justified by com-
paring the RMS errors for the same model-test pair in Fig.
4 and Fig. 9.

In summary, the purpose of the first-step ICP is: i) to
align the model ear helix with the test ear helix which brings
the model and test ear into coarse alignment; ii) to provide
the initial rigid transformation for second-step ICP.

Figure 3. Alignment of model ear and test ear
helixes.

Pair 5 Pair 10 Pair 18 Pair 19
RMS=2.11 RMS=2.19 RMS=1.90 RMS=3.29

Figure 4. Examples of coarsely aligned
model-test pairs in first-step ICP.

2.3 Second-Step ICP

Given the coarse match between model and test ear, the
purpose of the second-step ICP is to determine if the match
is good and to find a refined alignment between them. If the
test ear is really an instance of the model ear, the second-
step ICP algorithm will result in a good registration and
more corresponding points between model and test ear sur-
faces will be found.

One way to evaluate the registration is to measure some
distance between model and test; a good match will have
a small distance. The simple way to measure the distance
is to calculate the average distance between control points

in the model ear and the corresponding closest points in the
test ear. Since the ear is assumed to be in the center of the
image, the control points are selected around the center of
the image.

In summary, the second-step ICP algorithm starts with
the initial transformation � � and � � obtained from the first-
step ICP, and iteratively refines the transformation by mini-
mizing the distance between the control points of the model
ear and their closest points of the test ear.

2.4 Recognition

We have two results from the second-step ICP: i) a rigid
transformation which aligns the model and test ear; ii) a
root mean square (RMS) registration error. The RMS error
is used as the matching criterion. The model ear with the
minimum RMS error is declared as the recognized ear.

3. Experimental results

3.1 Data acquisition

We use real range data acquired using Minolta Vivid
Camera. The range image contains 200 � 200 grid points
and each grid point has a 3D coordinate (

� � � � � ). There are
30 subjects in our database and every subject has two left
side face range images taken at different viewpoints. The
ears were manually extracted from side face images. The
data is split into model and test sets. Each set has 30 ears.
The average number of 3D points in the ears is 1947. The
manually extracted model ears are shown in Figure 5.

Figure 5. Model ear images for ears 1-30 la-
beled from left to right and top to bottom.
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Figure 6. Matching error matrix displayed
as an intensity image (smaller values corre-
sponding to darker pixels).

Figure 7. Matching error distributions for true-
match and false-match.

3.2 Results

For every test ear, we run the two-step ICP procedure to
match it with every model ear. The RMS registration errors
are saved into the matching error matrix

� � � � � � � � � � �
	 � 
 � � � � � �  � � � 	 � 
 � � � � � � � � �

where
�  and

� �
are the

number of test ears and model ears respectively. The match-
ing error matrix is displayed as an intensity image shown in
Fig. 6. The smaller the matching error is; the more likely
the two ears are. From Fig. 6, we can see most of the di-
agonal pixels are darker than the other pixels on the same
row, which means correct recognition. In our experiments,
we achieved 93.3% recognition rate (2 errors out of 30).
The matching error distribution for true matches and false
matches is illustrated in Fig. 7. The minimum, maximum,
mean and standard deviation for true-match and false-match
are [0.56 1.96 0.79 0.26] and [0.78 3.81 1.57 0.53] respec-
tively. In our experiment, there is an overlap between two
distributions, which accounts for false matches.

The receiver operating characteristic (ROC) curve is de-
fined as the plot of genuine acceptance rate against false ac-
ceptance rate. Fig. 8 shows the ROC curve of the proposed

Figure 8. ROC curve of the experimental re-
sults.

approach on our database. The EER (equal-error rate) is
6.7%.

We show the correctly recognized model-test ear pairs
and the RMS registration errors in Fig. 9. In order to evalu-
ate our results, we display the model ear and test ear in the
same image, the transformed model and test ear in the same
image. With our programs, we can view them at different
viewpoints. In Fig. 9, we only display them at a certain
viewpoint. The images in the left four columns display test
ears and their corresponding model ears before registration;
the images in the right four columns show test ears and cor-
rectly recognized model ears after registration. From Fig.
9, we clearly see that the model ear is well aligned with the
corresponding test ear.

During the recognition, we made two errors: ear 23 is
falsely recognized as ear 9 and ear 26 is incorrectly recog-
nized ear 30. The two error cases are illustrated in Fig. 10
by showing the model-test pairs before and after registration
and the transformation parameters.

4. Conclusions

We have presented a two-step ICP procedure for the
recognition of 3D ears. First-step ICP brings the model
and test ear into coarse alignment; second-step ICP refines
the transformation to nicely align the model ear with the
test ear. Experimental results with 3D ear images show the
effectiveness and potential of our approach for robust ear
recognition in 3D. Despite these encouraging results, there
is one issue to point out. Although RMS registration error
used as the matching error criterion works for most of the
cases, the registration produces a low RMS error in some
cases. Incorporating other features into the verification step
will be helpful.
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Pair 1 Pair 2 Pair 3 Pair 4 RMS=0.59 RMS=0.68 RMS=0.78 RMS=1.03

Pair 5 Pair 6 Pair 7 Pair 8 RMS=0.74 RMS=0.69 RMS=0.70 RMS=0.78

Pair 9 Pair 10 Pair 11 Pair 12 RMS=0.56 RMS=0.90 RMS=0.59 RMS=0.64

Pair 13 Pair 14 Pair 15 Pair 16 RMS=0.80 RMS=0.63 RMS=0.83 RMS=1.07

Pair 17 Pair 18 Pair 19 Pair 20 RMS=0.92 RMS=0.67 RMS=0.77 RMS=0.65

Pair 21 Pair 22 Pair 24 Pair 25 RMS=0.67 RMS=0.94 RMS=0.65 RMS=0.73

Pair 27 Pair 28 Pair 29 Pair 30 RMS=0.73 RMS=0.76 RMS=0.68 RMS=0.63
(a) (b)

Figure 9. (a) 28 test ears with the corresponding model ears before registration. (b) 28 test ears with
the correctly recognized model ears after registration.
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(a) Pair 23 (b) Pair 23 after registration (c) Test ear 23 is falsely recognized as ear 9

The upper is model ear R=

�
�

� � � � � � � � � 	 	 	 � � � � 	 
 	 �� � 	 � � 
 � � � � � 	 � � � � 	 � � 	 	 � � � � � �  � 
 � � � � 
 �
�
� R=

�
�

� � � �  
 � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � �� � � � 	 � � � � � 
 � � � � �  �
�
�

T= � � �  � � � � � � � � � � 
 �  � �
T= � � � 	 � � 	 
  �  �  	 � �  �

RMS=1.04 RMS=1.03

(a) Pair 26 (b) Pair 26 after registration (c) Test ear 26 is falsely recognized as ear 30

The right is model ear R=

�
�

� � 
 � � 	 � � � � � 	 	 � � � 
 � � 
� � 
 � � � � � � � �  � � � 	 
 � � � 
 � � 
 � � � 	 � 	 � � � � � 
 �
�
� R=

�
�

� � � � � � � � � � 
 � 	 � � � � 	 �� � � � � � � � � � � � � � � � � �� � � � � 
 � � � � � � 
 
 � � � � � �
�
�

T= � �   � � �  � � � � � 	 � � � 
  � 
 � �
T= � � 	 � � � �  	 � � � � � � � � �

RMS=1.96 RMS=1.04

Figure 10. Examples of incorrectly recognized model-test pairs.
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