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Abstract. This paper addresses the problem of predicting recognition perfor-
mance on a large population from a small gallery. Unlike the current approaches
based on a binomial model that use match and non-match scores, this paper
presents a generalized two-dimensional model that integrates a hypergeometric
probability distribution model explicitly with a binomial model. The distortion
caused by sensor noise, feature uncertainty, feature occlusion and feature clutter
in the gallery data is modeled. The prediction model provides performance mea-
sures as a function of rank, population size and the number of distorted images.
Results are shown on NIST-4 fingerprint database and 3D ear database for various
sizes of gallery and the population.

1 Introduction

The goal of pattern recognition is to classify patterns into a number of classes. Patterns
can be images, signals or any other type of measurements that need to be classified [1].
Currently, in order to ensure the high confidence in security, biometrics (e.g. finger-
print, palm, face, gait, signature and speech) are used. Depending on application there
are two kinds of biometric recognition systems: verification systems and identification
systems [2]. A verification system stores users’ biometrics in a database. Then it will
compare a person’s biometrics with the stored features to verify if this person is who
she/he claims to be. This is a one-to-one matching problem. The system can accept or
reject this person according to the verification result. An identification system is more
complex, where for a query the system searches the entire database to find out if there
are any biometric features saved in the database that can match the query. It conducts
one-to-many matching [2].

Usually a biometric recognition system consists of three stages: image acquisition,
feature extraction and matching. Distortion often occurs in these stages which is caused
by the sensor noise, feature uncertainty, feature occlusion and feature clutter. In a bio-
metric recognition system before we can widely use the recognition algorithm we need
to evaluate its performance on a large population. Since we have very limited data, we
can build a statistical model which is based on a small gallery to estimate its perfor-
mance on large population. Considering the distortion problem that may occur in large
population we present an integrated model which considers the distortion to predict
the large population performance from a small gallery. Unlike the previous approaches
based on a binomial model that use match and non-match score distributions, we present
a generalized two-dimensional model that integrates a hypergeometric model explicitly
with a binomial model.
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Our paper is organized as follows. In section 2 we present the related work. In
section 3 we describe the distortion model which includes uncertainty, occlusion and
clutter. The detail of the integrated model are given here. Results are shown in section 4.
The integrated model is tested on NIST-4 fingerprint database and 3D ear database
for various sizes of small gallery and the large population. Conclusions are given in
section 5.

2 Related Work

Until now the prediction models are mostly based on the feature space and similarity
scores [3]. Tan et al. [4] present a two-point model and a three-point model to esti-
mate the error rate for the point based fingerprint recognition. Their approach not only
measures minutiae’s position and orientation, but also the relations between different
minutiae to find the probability of correspondence between fingerprints. They assume
that the uncertainty area of any two minutiae may overlap. Hong et al. [S] present a
method to predict the upper and lower bound for object recognition performance. They
consider the data distortion problem in the prediction. In their method performance is
predicted in two steps: compute the similarity between each pair of model; use the sim-
ilarity information along with the statistical model to determine an upper and lower
bound for recognition performance. Johnson et al. [6] build a cumulative match charac-
teristic (CMC) model that is based on the feature space to predict the gait identification
performance. Mahalanobis distance and L, norm are used to compute similarity within
the feature space. They make an assumption about the density that the population vari-
ation is much greater than the individual variation. When this assumption is invalid this
approach cannot be used. .

Wayman [7] and Daugman [8] develop a binomial model that uses the non-match
score distribution. This model underestimates recognition performance for large gal-
leries. Phillips et al. [9] create a moment model, which uses both the match score and
the non-match score distributions. Since all the similarity scores are sampled indepen-
dently, their results underestimate the identification performance. Johnson et al. [10]
improve the moment model by using a multiple non-match scores set. They average
match scores on the whole gallery. For each match score they count the number of
non-match scores that is larger than this match score, which leads to an error. In reality
the distribution of match score is not always uniform. Grother et al. [11] introduce the
joint density function of the match and non-match scores to solve the underestimation
problem.

In this paper we present a generalized two-dimensional model that integrates a hy-
pergeometric model with a binomial model to predict the large population performance
from a small gallery. It considers the data distortion problem in the large population. The
number of distorted images follows hypergeometric distribution. Like Hong et al. [5]
our distortion model includes feature uncertainty, occlusion and clutter. The distortion
model needs users to define some parameters, such as feature uncertainty probability
density function (PDF), occlusion amount, clutter amount, clutter region, and clutter
PDF etc. Then according to the different numbers of distorted images we get the dis-
tributions of match score and non-match score. After this we use the CMC curve [6]
to rank all these scores. A CMC curve can show different probabilities of recognizing
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biometrics depending upon how similar the features for this query biometrics are in
comparison to the other biometrics in the gallery. Finally we use a binomial distribu-
tion to compute the probability that the match score is within rank r. In this paper we
consider the performance when the rank r» = 1.

3 Technical Approach

We are given two sets of data: gallery and probe. Gallery is a set of biometric templates
saved in the database. For each individual there is one template saved in the gallery.
Probe is a set of query biometrics. Large population is the unknown data set whose
recognition performance needed to be estimated based on the given gallery and probe
set.

3.1 Distortion Model

Our distortion model includes feature uncertainty, occlusion and clutter. Assume F' =
{f1, fa, -+ , fx} is feature set of the biometrics, where f; = (z,y,t), x and y represent
feature’s location, ¢ represents feature’s other attributes except for location. Then the
distortion algorithm [5] does the following:

a) Uncertainty: Assume the uncertainty P.DF follows uniform distribution. It rep-
resents how likely each feature is to be perturbed. We replace each feature f; = (z,y,t)
with f; which is chosen uniformly at random from the set

{,y,t),(z',y') € ANEIGHBOR(z,y),(1 — a)t <t < (1+ o)t}

where « is a coefficient, usually 0 < a < 1. ANEIGHBOR(z,y) means 4 points
around (x,y), they are {(z — 1,3), (z + 1,9), (z,y — 1), (z,y + 1)}. The unit is pixel.

b) Occlusion: Assume the number of features to be occluded is O. Uniformly choose
O features out of the k features, remove these features.

c) Clutter: Add C additional features, where each feature is generated by picking a
feature according to the clutter PDF from the clutter region (CR). The clutter PDF -
determines the distribution of clutter over the clutter region. Clutter region is used to
determine where clutter features should be added. The clutter region typically depends
upon the given model to be distorted. We usually use a bounding box to define the
clutter region

CR= {(139 Y, t),xmin L% < Tmazy Ymin < Y < Ymaz) bmin S ES tmam}

where Timin and Tpqee represent the minimum and maximum value of x, the same
definition for Ymin» Ymaz> tmin a0d tmaz.

We define the distortion region of feature f, denoted by DR(f), as the union of all
features that could be generated as uncertain version of f. In order to simplify, we use
uniform PDF for uncertainty and clutter. In fact other PD F's are also possible and can
be implemented.

3.2 Prediction Model

Our two-dimensional prediction model considers the distortion problem which is much
more conform with the reality than our previous work [3]. Assume we have two kinds
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of different quality biometric images, group #1 and group #2. Group #1 is a set of
good quality biometric images without distortion. Group #2 is a set of poor quality
biometric images with feature uncertainty, occlusion and clutter. In general, the size of
these two groups are N; and N,. We randomly pick p images from group #1 and group
#2. Then the number of distorted images y which are chosen from group #2 should
follow hypergeometric distribution.

Cp, Chv
fly) = —(;VfT,S’Z €]
P

where
N,!
(0 —=y)!(N —p+y)
ove _ Nl
Yo yl(Na—y)!
NN, _ (N1 + o)l
P p!(N1 + N2 — p)!

where N; + Nj is the total number of images in these two groups, p — ¥ is the number
of images chosen from group #1.

In order to simplify the description we assume sizes of gallery and probe set are
all n. For each image in the probe set we compute the similarity scores with every
image in the gallery. Then we have one match score and n — 1 non-match scores for
this image. Here we assume that the match score and the non-match score are inde-
pendent. Thus for a given number of distorted images we get a set of match scores
M; = [m;,1,mi2, -+ ,m;y] and a set of corresponding non-match scores

Ny __
Cp—y -

ni1,1 0 Ninl

NM; = :
Ni1,(n—-1) ' Mimn,(n—1)

where i represents the number of images selected from group #2,i = 1,2, -- ,n. Now
for a given number of distorted images ¢, jth image has a set of similarity scores which
include one match score and n — 1 non-match scores

Sij = [mij niga - Nijn-1)]

wherei=1,2,---,n,7=1,2,--+ ,n.

If we have enough match scores and non-match scores then we can estimate their
distributions. From above we know that the similarity score distributions depend not
only on the similarity scores but also on the number of images with distortion. Here
we assume ms(z|y) and ns(z|y) represent the distributions of match scores and non-
match scores given the number of distorted images. Assume if the similarity score is
higher then the biometrics are more similar. The error occurs when a given match score
is smaller than the non-match score. For a given number of distorted images the prob-
ability that the non-match score is greater than or equal to the match score z is N.S(z)
where
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Ns@ = [ nsni@i @

Then the probability that the non-match score is smaller than the match score is 1 —
NS(z).

Here we assume that the similarity score distributions are similar for small gallery
and large population. If the size of large population is IV, then for jth image we can
have a set of similarity scores, which include one match score and N — 1 non-match
scores. We rank the similarity scores in decreasing order. Then for a given number of
images with distortion the probability that the match score x rank r is given by the
binomial probability distribution

a5t (1= [ nstani) " ([ ns(tw)f(y))'_l ®

Integrating over all the match scores, for a given number of images with distortion the
probability that the match scores rank r can be written as

[as (i [Crstnrw) ([ i) moteioas
)

‘We integrate over all the number of images chosen from group #2, the probability that
the match scores rank r can be written as

/ oM 1(1- / Zns t|y)f<y>)N-r

(/ Z ns tly)f(y)) E ms(z|y) f(y)dz 5)

y=0

In theory the match scores can be any values within (—oo, 00). We get the probability
that the match scores are within rank r is

n N-—r
P(N,r) = / cn- ( / ;ns(tly)f(y))

i=1
n r—=1 5,
( / Zns(tly)f(y)) S ms(aly) f(y)de ®)
T y=0 y=0

Considering the correct match take place above a threshold ¢, the probability that the
match score is within rank r becomes

Py =3 [ o ( /:OXn:M(tly)f(y))N—r

i=1 y=0

n r—1 ,
( / Zns(tly)f(y)> > _ms(ely)f(y)de (7

y=0 y=0
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For the problem where rank » = 1 then the prediction model with the threshold ¢
becomes

n N-1 n
PV = [ (1— / Zns<t|y>f<y>) S ms(aly)fW)dz  (®)

y=0 y=0

In this model we make two assumptions: match scores and non-match scores are
independent and their distributions are similar for large population. In this model N
is the size of large population whose performance needs to be estimated. Small size
gallery is used to estimate distributions of ms(z|y) and ns(z|y) .

4 Experimental Results

In this section we verify our model on NIST-4 fingerprint database and ear database for
different sizes of small gallery and large population. Then we compare the performance
of our integrated model with our previous binomial model on the NIST-4 fingerprint
database.

4.1 Integrated Prediction Model

Fingerprint Database: All the fingerprints we use in the experiments are from NIST
Special Database 4 (NIST-4). It consists of 2000 pairs of fingerprints, each of them is
labeled ‘f” or ‘s’ that represent different impressions of a fingerprint followed by an
ID number. The images are collected by scanning inked fingerprints from paper. The
resolution of the fingerprint image is 500 DPI and the size is 480 x 512 pixels. Figure 1
is a pair of fingerprints from NIST-4 database.

f0006_09 s0006_09

Fig. 1. Sample images from NIST-4

Usually the minutiae features are used for fingerprint recognition which can be ex-
pressed as f = (z, y, ¢, d), where z and y are the locations of the minutiae, c is the class
of minutiae, and d is the direction of minutiae. We define the percentage of minutiae
with distortion for one fingerprint as g. In our experiments we choose g = 5%, 7%, and
8% respectively. By applying distortion model to these 2000 pairs of fingerprints ac-
cording to different distortion percentages, we get 6000 pairs of distorted fingerprints.
Assume the number of minutiae is num, usually one pair of fingerprints have different
number of minutiae so j = 1,2, - - - ,4000. The distortion model is as following:
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(a) Uncertainty: Uniformly choose U = g X num; minutiae features out of the
num,; replace each f; = (z,y, ¢, d) with f; chosen uniformly at random from the set

{(«',y,c,d),(z',y') € ANEIGHBOR(z,y),d =c+1,d =d+3°}

wherei =1,2,---,U.

(b) Occlusion: Uniformly choose O = g x num; minutiae features out of the num;
remove these minutiae.

(c) Clutter: Add C = g x num,; additional minutiae, where each minutiae is gener-
ated by picking a feature uniformly at random from the clutter region. Here we choose
the clutter region as

CR = {(z,y,¢,d),50 < z < 450,60 < y < 480, c = {0,1,2,3,4},10° < d < 350°}

In our experiments we use the uniform distribution as the uncertainty PDF and the
clutter PDF. The number of features with uncertainty, occlusion and clutter are the
same. By adding different percentage of minutiae with distortion g we have four groups
of fingerprint images, each group has 2000 pairs of fingerprints. Group #1 is the original
fingerprints in NIST-4, group #2 is the fingerprints with g = 5% , group #3 with g =
7%, and group #4 with g = 8% .

Assume our small galley size n = 50. We randomly pick up 50 fingerprints pairs
from group #1 and group #2. Then the number of fingerprints chosen from group #2
which denoted by y follows hypergeometric distribution,

050050_
f) =~ ©)

Now we have 50 pairs of images including the original images and the distorted im-
ages. The images labeled with ‘f” are used as the gallery and the others labeled with ‘s’
are used as the probe set. We use fingerprint verification approach which based on the
triplets of minutiae to compute the similarity scores for these fingerprints [12]. Then we
get the distributions of the match score and the non-match score. Figure 2 is the distri-
butions of the match score and the non-match score for different number of distorted
images. From Figure 2 it’s clear that these distributions depend not only on similarity
scores also on the number of distorted images. Here we choose the threshold for correct
match ¢ = 12. For the verification problem we consider the case when rank r = 1. This
small gallery n = 50 applies in the integrated prediction model which can predict the
large population performance, here we choose N = 6000. Now we get the prediction
result for g = 5%. By repeating the above process we get the estimation results for
g = 7% and g = 8%. Average these three prediction values we get the estimation re-
sult for large population N = 6000. We choose different size of small gallery n = 70.
By repeating the above process we obtain the estimation results for large population.
Figure 3 shows the absolute error between the predicted and experimental verification
performance. The absolute error is smaller than 0.08 when the population size is larger
than 1000. That means our integrated prediction model can efficiently predict the fin-
gerprint recognition performance for large population.



362 Rong Wang, Bir Bhanu, and Hui Chen

st

>4
s 20 Distortion

2400 1 o
3000
Match scores 00 0 Non-match scorés 2 9

@ (b

Fig. 2. Similarity scores distributions. (a) Match scores distribution. (b) Non-match scores distri-
bution
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Fig.3. Absolute error between the integrated prediction model and experimental fingerprint
recognition performance

model_1 test_1 model_2 test_2

Fig. 4. Sample images from 3D ear database

Ear database: Ear data we use in this experiment are acquired by using Minolta Vivid
300. The image contains 200 x 200 grid points which has 3D coordinate (z, y, 2). This
data set has 52 subjects and every subject has two range images which are taken at
different viewpoints. Figure 4 shows two pairs of ear. We add Gaussian noise N (0, o =
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Table 1. Prediction using the integrated model and experimental ear recognition performance

Gallery Size|Experiment|Prediction
50 88.00% | 83.28%

Table 2. Predicted ear recognition performance for different sizes of large population by the
gallery of 52 objects '

Gallery Size|Prediction Results
100 81.67%
150 81.22%
200 81.07%
250 81.01%
300 80.99%

0.6mm) to these images. Then we have two image groups: group #1 has 52 images
without noise, group #2 has 52 images with Gaussian noise. We randomly choose 52
images from these two image groups as our small gallery we can predict the recognition
performance for different large population sizes. Table 1 shows the comparison of the
predicted and actual recognition performance with rank r = 1. The error between them
is 0.0472 which indicate that our integrated prediction model can predict ear recognition
performance for large population. Table 2 shows predicted recognition performance for
different sizes of large population by the small gallery of 52 objects.

4.2 Comparison with Previous Work

In our previous work [3], we use binomial model to predict the fingerprint recognition
performance when rank 7 = 1. In this model the prediction problem is expressed as:

P(N,r,t) = /t ” (1 - L - ns(t)dt> N_rm.s(ac)dm (10)

Compared with equation ( 8) binomial model did not consider the distortion problem
in large population. Figure 5 is the prediction error between the integrated model and
the binomial model under the same small gallery size for fingerprint database. The
prediction error made by integrated model is much smaller than that of the binomial
model which indicate that the integrated model is suitable for the distortion problem.

5 Conclusions

We have presented an integrated model which can predict large population performance
from a small gallery. This model considers the distortion problem which happens in
large population. Results are shown on NIST-4 fingerprint database and 3D ear database
for various sizes of small gallery and population. From the above results we can see that
compared with previous approaches our model improve the prediction results and can
be used to predict the large population performance. In this paper we mainly focused on
the biometrics recognition system, in fact this prediction model can be used to predict
other kind of object recognition system.
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Fig. 5. Prediction error between the integrated model and the binomial model for fingerprint
recognition performance
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