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Abstract

This paper presents a novel approach for human recog-
nition by combining statistical gait features from real and
synthetic templates. Real templates are directly computed
from training silhouette sequences, while synthetic tem-
plates are generated from training sequences by simulat-
ing silhouette distortion. A statistical feature extraction ap-
proach is used for learning effective features from real and
synthetic templates. Features learned from real templates
characterize human walking properties provided in training
sequences, and features learned from synthetic templates
predict gait properties under other conditions. A feature fu-
sion strategy is therefore applied at the decision level to im-
prove recognition performance. We apply the proposed ap-
proach to USF HumanlID Database. Experimental results
demonstrate that the proposed fusion approach not only
achieves better performance than individual approaches,
but also provides large improvement in performance with
respect to the baseline algorithm.

1 Introduction

Traditional human recognition methods, such as finger-
print, face or iris biometrics, generally require a coopera-
tive subject, views from certain aspects and physical con-
tact or close proximity. These methods can not reliably rec-
ognize non-cooperating human at a distance in real-world
changing environmental conditions. Moreover, in various
applications of human identification, many established bio-
metrics can be obscured. Gait, which concerns recognizing
individuals by the way they walk, has been an important
biometric without the above-mentioned disadvantages.

In the gait recognition process, there are also some chal-
lenging problems. In silhouette based gait recognition, the
extracted silhouettes are generally very noisy due to the
complexity of real world. These incidental silhouette errors
make the recognition difficult. Another problem is the lack
of gallery gait data. Gait can be affected by clothing, shoes,
environmental or physical conditions. However, due to the
difficulty of gait data acquisition, the number of gallery se-
quences for each person is very limited. Even several se-
quences for some person are available, most of them are

from similar conditions. This makes it difficult to recognize
individuals under other conditions.

In this paper, the problem of silhouette noise is address
by a novel gait representation, gait energy image (GEI),
which represents gait in a single image while preserving
temporal information and is insensitive to incidental silhou-
ette errors. To address the problem of lacking gallery gait
data, we propose a novel approach for human recognition
by combining statistical gait features from real and syn-
thetic templates. The fused features not only characterize
human walking properties provided in training sequences,
but also predict gait properties under other conditions.

2 Related Work

In recent years, various approaches have been proposed
for human recognition by gait. These approaches can be
divided into two major categories: model-based approaches
and model-free approaches.

Model-based gait recognition approaches focus on re-
covering a structural model of human motion. Niyogi and
Adelson [7] find the bounding contours of the walker, and fit
a simplified stick model on them. A characteristic gait pat-
tern in spatiotemporal volume is generated from the model
parameters for recognition. Yoo et al. [14] estimate hip and
knee angles from body contour by linear regression anal-
ysis. Then trigonometric-polynomial interpolant functions
are fitted to the angle sequences, and the parameters so-
obtained are used for recognition. To obtain more reliable
estimates in the presence of noise, Tanawongsuwan and Bo-
bick [11] reconstruct the human structure by tracking 3D
sensors attached on fixed joint positions.

Model-free approaches make no attempt to recover a
structural model of human motion. Little and Boyd [6] de-
scribe the shape of the human motion with a set of features
derived from moments of a dense flow distribution. Shutler
et al. [10] include velocity into the traditional moments to
obtain the so-called velocity moments (VMs). BenAbdelka-
der et al. [1] use height, stride and cadence for to identify
human. Kale et al. [5] choose the width vector from the
extracted silhouette as the representation of gait, and con-
tinuous HMMs are trained for recognition.

Huang et al. [4] propose a template matching approach
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Figure 1. System diagram of human recognition using proposed statistical feature fusion approach.

by combining transformation based on canonical analysis,
with eigenspace transformation for feature selection. Sim-
ilarly, Wang et al. [13] generate boundary distance vector
from the original human silhouette contour as the template,
which is used for gait recognition via eigenspace transfor-
mation. Phillips et al. [9] propose a direct template match-
ing approach to measure the similarity between the gallery
and probe sequences by computing the correlation of cor-
responding time-normalized frame pairs. Similarly, Collins
et al. [2] first extract key frames from a sequence, and the
similarity between two sequences is computed from the nor-
malized correlation on key frames only. Tolliver and Collins
[12] cluster human silhouettes of each training sequence
into k prototypical shapes. Silhouettes in a testing sequence
are also classified into k prototypical shapes that are used to
compare with those in training sequences.

3 Technical Approach

In this section, we describe the proposed statistical fea-
ture fusion approach for gait-based human recognition. In
the training procedure, each gallery silhouette sequence is
divided into cycles by frequency and phase estimation. Real
gait templates are then computed from each cycle, and dis-
torted to generate synthetic gait templates. Next, we per-
form a component and discriminant analysis procedure on
real and synthetic gait templates, respectively. As a result,
real features and synthetic features form feature databases,
and real and synthetic transformation matrixes will be used
to project probe gait templates onto the feature spaces. In
the recognition procedure, each probe silhouette sequence
is processed in the same way to generate real and synthetic
gait templates. These templates are then transformed by
real and synthetic transformation matrixes to obtain real and
synthetic features, respectively. Probe features are com-
pared with gallery features in the database, and a feature
fusion strategy is applied to combine real and synthetic fea-
tures at the decision level to improve recognition perfor-
mance. The system diagram is shown in Figure 1.

3.1 Gait Frequency and Phase Estimation

Regular human walking can be considered as cyclic mo-
tion where human motion repeats at a stable frequency.

Therefore, it is possible to divide the whole gait sequence
into cycles and study them separately. We assume that sil-
houette extraction has been performed on original human
walking sequences, and begin with the extracted binary sil-
houette image sequences. The silhouette preprocessing in-
cludes size normalization (proportionally resizing each sil-
houette image so that all silhouettes have the same height)
and horizontal alignment (centering the upper half silhou-
ette part with respect to its horizontal centroid). In a prepro-
cessed silhouette sequence, the time series signal of lower
half silhouette part size from each frame indicates the gait
frequency and phase information. The obtained time series
signal consists of few cycles and lots of noise, which lead to
sidelobe effect in the Fourier spectrum. To avoid this prob-
lem, we estimate the gait frequency and phase by maximum
entropy spectrum estimation [6].

3.2 Gait Representation

Most gait recognition approaches extract features from
each frame and compose a feature sequence for the human
walking sequence [1, 2, 4, 5, 6, 9, 10, 12, 13]. During
the recognition procedure, they either match the extracted
statistics from the feature sequence, or match the features
between the corresponding pairs of frames in two sequences
that are time-normalized with respect to their cycle lengths.
The assumption here is that the order of poses in human
walking cycles is the same, i.e., the limbs move forward
and backward in a similar way among normal people. The
difference exists in the phase of poses in a walking cycle,
the extend of limbs, and the shape of the torso, etc. As the
order of poses in regular human walking is generally not
considered in the gait recognition process, it is possible to
compose a spatio-temporal gait template in a single image
instead of an ordered image sequence as usual.

Given a preprocessed binary gait silhouette sequence
B(x,y,t), the grey-level gait energy image (GEI) is defined
as follows

1 N
Gla,y) = 5 D Bly,b) (1)
t=1

where IV is the number of frames in the complete cycle(s) of
a silhouette sequence, ¢ is the frame number of the sequence
(moment of time), x and y are values in the 2D image co-
ordinate. Figure 2 shows the sample silhouette images in
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Figure 2. Sample silhouette images in a gait cycle and the corresponding GEI (the right most image).

a gait cycle and the right most image is the corresponding
GEI. As expected, it reflects major shapes of silhouettes and
their changes over the gait cycle. We refer to it as gait en-
ergy image because: (a) each silhouette image is the nor-
malized gait (human walking) area; (b) a pixel within the
silhouette in a image means that human walking occurs at
this position and this moment; (c) a pixel with higher inten-
sity value in GEI means that human walking occurs more
frequently at this position (i.e., with higher energy).

GEI has several advantages over the gait representation
of binary silhouette sequence. GEI is not sensitive to inci-
dental silhouette errors in individual frames. The robustness
could be further improved if we discard those pixels with
the energy values lower than a threshold. Moreover, with
such a 2D template, we do not need to consider the normal-
ized time moment of each frame, and the incurred errors can
be therefore avoided.

3.3 Real and Synthetic Gait Templates

The number of training sequences for each person is lim-
ited (one or several) in real surveillance applications. This
makes it difficult to recognize individuals under various
conditions. To solve this problem, one solution is directly
measuring the similarity between the gallery (training) and
probe (testing) templates. However, direct template match-
ing is sensitive to silhouette distortion such as scale and dis-
placement changes. Statistical feature learning may recover
inherent properties in training templates from an individual
and therefore insensitive to such silhouette distortion. How-
ever, with gait templates obtained under similar conditions,
the learned features may be overfitting. Therefore, we gen-
erate two sets of gait templates, real templates and synthetic
templates, to solve the overfitting problem.

The real gait templates for an individual are directly
computed from each cycle of the silhouette sequence of this
individual. Let {R;},7 = 1,...,n, be the real GEI template
set of the individual, where n is the number of completes
cycles in the silhouette sequence. The first row of Figure
3 shows an example of the real GEI template set from an
individual. Note that all the real examples have the similar
appearance in the presence of noise.

Although real gait templates provide cues for individ-
ual recognition, real gait templates from the same sequence
are all obtained under the same conditions. If the condi-
tion changes, the learned features may not work well for
recognition. Various conditions have effect on silhouette
appearance from the same person: walking surface, shoe
and clothing, etc. The common silhouette distortion in the

lower silhouette part occurs under most conditions. This
kind of distortion includes shadows, body parts missing,
and sequential silhouette scale changes. For example, sil-
houettes on the grass surface may miss the bottom part of
feet, while silhouettes on the concrete surface may contain
additional shadows. In these cases, silhouette size normal-
ization errors occur, and silhouettes so-obtained may have
different scales with respect to silhouettes on other surfaces.
Therefore, we generate a series of synthetic gait templates
that are insensitive to lower silhouette part distortion and
small silhouette scale changes as shown in the second row
of Figure 3.

Synthetic gait templates are computed from the funda-
mental GEI template (Ry = % >, R;) of a given silhou-
ette sequence as follows. First of all, we select the bottom
part distortion area in GEI based on anthropometric data [8].
The length from the bottom of bare foot to the ankle above
the sole is approximately 1/24 of the stature. Considering
the height of heelpiece and shadow, we select 1/9 of the
silhouette height as approximate estimate of the distortion
area for all GEI templates in different conditions (A-L). In
the first step, we cut k rows from the bottom of the tem-
plate (e.g., size of 128 x 88), and proportionally resize the
remaining template (128 — k rows) to a template of 128
rows by using nearest neighbor interpolation. Cutting left
and right borders, we will obtain a new template with the
size of 128 x 88. Repeating this step (2k rows, 3k rows, ...)
until reaching the upper row of the distortion area, we will
obtain a set of synthetic templates {S;},7 =1,...,m. The
synthetic templates expanded from the same R have the
same global shape properties but different bottom parts and
different scales. Therefore, they provide cues for individual
recognition that are insensitive to silhouette scale changes
and lower silhouette part distortion.

With the obtained real and synthetic gait templates, a
statistical feature extraction method is used for learning
gait features from real and synthetic templates, respectively.
Features learned from real templates characterize human
walking properties provided in training sequences, and fea-
tures learned from synthetic templates predict gait proper-
ties under other conditions.

3.4 Statistical Feature Extraction

To achieve the best data representation and the best class
separability simultaneously, we extract features from gait
templates by principal component analysis (PCA) followed
by multiple discriminant analysis (MDA) [4].
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Figure 3. An example of real and synthetic gait templates generated from a silhouette sequence.

PCA seeks a projection that best represents the data
[3]. Given the d-dimensional training template set
{x1,x%2,...,Xp, }, the d'-dimensional feature vector yy, is
obtained as follows
k=1,..

Ye = Mpcaxk: , Nt (2)

where M, is the transformation matrix obtained by PCA
on {x1,Xa, ..., Xy, }, and n; is the number of the gait tem-
plates from all people in the training database. MDA
seeks a projection that best separates the data. Assum-
ing that {y1,y2,...,yn, } belong to ¢ classes, the (¢ — 1)-
dimensional feature vector z;, is obtained as follows

Z = Mmdayk: k= 17 ey Tt (3)

where M, 4, is the transformation matrix obtained by MDA
on {Y17 Y2, ¥Yn, }

For each training gait template, its gait feature vector is
obtained as follows

7k = MmdaMpeaXr = Txp, k=1,...,m4 4)

The obtained feature vectors compose the feature database
for individual recognition.

3.5 Feature Fusion for Individual Recognition

We train the real gait templates and synthetic gait tem-
plates separately for feature extraction. Let {r} be the set
of real feature vectors extracted from real training gait tem-
plates, and 7). is the corresponding real transformation ma-
trix. Similarly, let {s} be the set of synthetic feature vectors
extracted from synthetic training gait templates, and 7', is
the synthetic transformation matrix. The class centers for
{r} and {s} are given as follows

mm:—g r and mszz—g s, +1=1,...,c

'reR;

)
where ¢ is the number of classes (individuals) in the
database, R; is the set of real feature vectors belonging to
the ith class, S; is the set of synthetic feature vectors be-
longing to the ith class, n; is the number of feature vectors

in R;, and m; is the number of feature vectors in S;. As-
suming that feature vectors in each class are Gaussian dis-
tributed with the same covariance matrix ¥ = oI, Bayesian
classifier becomes minimum Euclidean classifier which will
be used in the following individual recognition.

Given a probe gait silhouette sequence P, we follow
the procedure in Section 3.3 to generate real gait templates
{R }. j = 1,...,n and synthetic gait templates {S;},
j=1...,m. The corresponding real and synthetic fea-
ture vectorAsets are obtained as follows

{RP} . AI‘]' = TTR]', _] = ].,...,TL

{Sp} : AS]' :TSS]’,

For the classifier based on real gait templates, we define

Z||r] myll, i=1,..,c (6)

j=1..m

(RP,

We assign P € wy, if

D(Rp,Ry) = min D(Rp, R;). (7)
1=
For the classifier based on synthetic gait templates, we de-
D(Sp,Si) = min|[§ —myll, i=1..,c (@)
]:

We assign P € wy, if

D(Sp,S) = min D(Sp, S). ©

For the fused classifier, we define
.. clc —1)D(Rp,Ry)
D({vasp}v{Rivsi}) = C C
22i:1 Zj:l,j;éi D(RiaRj)
c(c = 1)D(Sp,Si) -
+ = = , t=1,...,c(10)
2 Ei:l Ej:l J#i D(Si,Sj)

where 2370, 375 i D(Ri, Rj)/c(c—1) is the average
distance between reaf feature vectors of every two classes
in the database which is used to normalize D(R p,R;), and

250, Z]:L] ; D(Si, Sj)/c(c—1) has the similar mean-

ing. We assign P € wy, if

D({Rp,Sp}, {Ri,St}) = IP:i{lD({ﬁP,SP},{Ri,Si})-
(11)
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Figure 4. GEl examples in USF HumaniD database.

Table 1. Twelve experiments designed for hu-
man recognition in USF HumanlID database.

Experiment | Size of Difference between
Label Probe Set | Gallery and Probe Sets

A 122 View
B 54 Shoe
C 54 View and Shoe
D 121 Surface
E 60 Surface and Shoe
F 121 Surface and View
G 60 Surface, Shoe and View
H 120 Briefcase
I 60 Shoe and Briefcase
J 120 View and Briefcase
K 33 Time, Shoe and Clothing
L 33 Surface and Time

4 Experimental Results

Our experiments are carried out on the USF HumanID
gait database [9]. This database consists of people walk-
ing in elliptical paths in front of the camera. For each per-
son, there are up to 5 covariates: viewpoints (left/right),
shoe types (A/B), surface types (grass/concrete), carrying
conditions (with/without a briefcase), and time and cloth-
ing. Twelve experiments are designed for individual recog-
nition as shown in Table 1. The gallery set contains 122
sequences. Individuals are unique in the gallery and each
probe set, and there are no common sequence among the
gallery set and all probe sets. The gait templates (R in
Section 3.3) of two individuals in the gallery set and their
corresponding sequences in probe sets A-L are shown in
Figure 4.

Phillips et al. [9] propose a baseline approach
to extract human silhouette and recognize people in
this database. For comparison, they provide extracted
silhouette data which can be found at the website
http://marathon.csee.usf.edu/GaitBaseline/. ~ Our experi-
ments begin with these extracted binary silhouette data (ver-
sion 2.1) that are updated on September 5, 2003. The per-
formance of their baseline algorithm are shown in Table 2.
Currently, their results are the only public results on the ver-
sion 2.1 data. In this table, rankl means that only the first
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subject in the retrieval rank list is recognized as the same
subject as the query subject, and rank5 means that the first
five subjects are all recognized as the same subject as the
query subject. The performance in the table is the recogni-
tion rate under these two definitions.

We carry out experiments of human recognition by real
features, synthetic features and fused features according to
rules in (7), (9), and (11), respectively. Table 2 compares
the recognition performance of USF baseline algorithm and
our proposed approaches. It is shown that the rankl per-
formance of proposed real feature classifier is better than
or equivalent to that of baseline algorithm on all experi-
ments. The rank5 performance of real feature classifier is
better than that of baseline algorithm on most experiments
but a little worse on experiments D and F. This demon-
strate that matching features learned from real gait tem-
plates achieves better recognition performance than direct
matching between individual silhouette frame pairs in base-
line algorithm.

The performance of proposed synthetic feature classi-
fier is significantly better than that of real feature classifier
on experiments D-G and K-L. Probe sets in D-G have the
common difference of walking surface with respect to the
gallery set, and probe set in K-L have the common differ-
ence of time with respect to the gallery set. In these probe
sets, the silhouette distortion in the lower body part is obvi-
ous compared with silhouettes in the gallery set. The experi-
mental results show that the proposed synthetic feature clas-
sifier is insensitive to this kind of distortion compared with
real feature classifier. However, the proposed synthetic fea-
ture classifier sacrifices the performance on experiments H-
J where probe sets contain people carrying briefcase where
the briefcases occur beyond the selected distortion area.

The fused feature classifier achieves better performance
than individual real feature classifier and synthetic classifier
in most experiments, and achieves significantly better per-
formance than baseline algorithm in all experiments. It is
shown that the fusion approach take advantage of merits in
individual features.

Although the proposed fusion approach achieves signif-
icantly better results than baseline algorithm, its perfor-
mance is still not satisfied in the presence of large silhouette
distortion such as probe sets K and L. If we can find some
rules to simulate the distortion in these complex cases, the
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Table 2. Comparison of recognition performance among different approaches on silhouette sequence
version 2.1 (Legends: baseline - USF baseline algorithm [9]; real - proposed real gait feature classifier;
synthetic - proposed synthetic gait feature classifier; fusion - proposed gait feature fusion.)

Rank1 Performance Rank5 Performance

baseline | real | synthetic | fusion || baseline | real | synthetic | fusion

A 73% 87% 83% 91% 88% 92% 92% 94%

B 78% 85% 94% 94% 93% 93% 96% 96%

C 48% 76% 61% 81% 78% 89% 91% 93%

D 32% 31% 50% 51% 66% 58% 68% 85%

E 22% 30% 48% 57% 55% 60% 69% 79%

F 17% 18% 22% 25% 42% 36% 50% 52%

G 17% 21% 33% 29% 38% 43% 55% 57%

H 61% 63% 48% 62% 85% 90% 80% 89%

I 57% 59% 52% 60% 78% 81% 78% 86%

J 36% 54% 34% 57% 62% 79% 69% 77%

K 3% 3% 18% 9% 12% 12% 39% 24%

L 3% 6% 12% 12% 15% 12% 30% 21%
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