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Abstract

A robust moving object detection system for an out-
door scene must be able to handle adverse illumination
conditions such as sudden illumination changes or lack of
illumination in a scene. This is of particular importance
for scenarios where active illumination cannot be relied
upon. Utilizing infrared and video sensors, we propose a
novel sensor fusion algorithm that automatically adapts
to the environmental changes that effect sensor measure-
ments. The adaptation is done through a new cooperative
coevolutionary algorithm that fuses the scene contextual
and statistical information through a physics-based
method. Our sensor fusion algorithm maintains high de-
tection rates under a variety of conditions and sensor
failure. The results are shown for a full 24 hour diurnal
cycle.

1. Introduction

Over the past several decades, many approaches have
been developed for moving object detection for indoor
and outdoor scenes. Moving object detection methods fall
into two categories: (a) feature-based methods [10], and
(b) featureless methods (e.g., image subtraction, optical
flow, statistical modeling) [1, 3-5,9, 12]. Each of these
methods offers advantages that are exploited for different
applications. For example, image subtraction is simple
and may suffice for indoor type illuminations, temporal
differencing can be adopted for slow moving objects, op-
tical flow is useful for a moving camera platform and sta-
tistical modeling can capture the background motion.

Some of the shortcomings of the current approaches for
moving detection are: 1) None of these approaches ad-
dress the problem of low light or no light conditions, 2)
No contextual information is used to update the Guassian
parameters, 3) Generally, a large number of observations
are required before a background model can be learned
effectively, 4) All the previous algorithms have been ap-
plied to a single sensing modality (usually visible or near-
infrared) and no results have been shown for extreme
conditions, for example, no illumination, sunset, or sunrise
condition. In order to overcome illumination conditions
such as low or no light conditions, other sensing modali-
ties such as cameras operating in near or longwave IR
have been utilized [2]. However, these sensing modalities

could still fail due to similar conditions in their respective
bandwidth. For example, in a longwave (thermal) IR a
subject’s temperature could reach that of the background,
thus having limited contrast which may cause detection
failure.

Multisensor fusion attempts to resolve this problem by
incorporating benefits of different sensing modalities. The
advantages of multisensor fusion are improved detection,
increased accuracy, reduced ambiguity, robust operation,
and extended coverage. Sensor fusion can be performed at
different levels including signal or pixel level, feature
level and decision level.

Our algorithm provides a novel sensor fusion algorithm
that fuses longwave (thermal) and visible sensors in a uni-
fied manner. By utilizing the IR signal, we can overcome
some of the limitations of the visible cameras and by
combining the visible and IR signal we improve the detec-
tion under variety of conditions.

The salient features of our approach presented in this pa-
per are given below: a) consistent data representation: all
sensing modalities are represented by a matrix of mixture
of Gaussians in a consistent manner. b) physical models:
sound physical models are used for each sensing modality
(e.g., visible and IR) to provide prediction for each signal.
c) evolutionary-based fusion: a cooperative coevolution-
ary algorithm is developed to systematically fuse and inte-
grate information from both statistical and physical mod-
els into a unified structure for detection. d) context-based
adaptation: environmental conditions such as ambient air
temperature, wind velocity, surface emissivities, etc., are
directly incorporated into the detection algorithm and in-
fluence the fusion strategies.

2. Related Work and Motivation

Sensor fusion approaches generally fall into one of the
following categories: statistical-based, Al-based, algo-
rithmic-based and physics-based. The Al and algorithmic-
based paradigms are less suited for dynamic conditions
whereas the statistics and physics-based paradigms are the
method of choice for integrating sensor information that
can change over time.

We provide a new sensor fusion technique that combines
the statistical and physics-based fusion paradigms through
an evolutionary process. We overcome the disadvantage
of each of these paradigms by including suitable sensor
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Figure 1. Sensor Fusion Architecture.

models that have enormous generalizing power. This gen-
eralizing power is then used to complement the limited
available sensor data that is required by the statistical
methods. The fusion is performed at the pixel level where
the information loss is minimal.

3. Technical Approach

The sensor fusion architecture for moving object detection
is depicted in Figure 1. Observations from the sensors
along with the external conditions, which carry the
contextual information, are used to build statistical
(mixture of Gaussian) background model. The contextual
information is also used to update values of internal
physical models. Physical models include reflectance
models for predicting image intensity values and thermal
models for predicting background surface temperature
values. Unlike the previous work that updates the back-
ground models solely based on the current observations,
we incorporate our physical models into the adaptive loop.
The physical models are integrated with the statistical
models through a cooperative coveolutionary process [7].
The cooperative coevolutionary process estimates the best
representation for the background per pixel. This is done
through genetic based evolutionary process that searches
for the optimal representation based on the current, and
recent past observations and detection results in addition
to the predictions given by the physical model.

Our representation of a matrix of mixture of Gaussians
(described in section 3.1) includes Gaussian parameters
for the infrared and visible sensors (including RGB chan-
nels). A population of this representation is maintained as
a pool of individuals for the evolutionary process. Once
the evolutionary process is stopped the best individual
represents the background model of that pixel. In this
manner, the contextual information plays an active role in
contributing to the most ideal sensor for a particular con-
dition. The detection algorithm in Figure 1 requires a
model of the background. This model is estimated by a
mixture of Gaussians per pixel. Table 1 shows this proc-

ess. The details are explained in the following sub-
sections.

3.1 Representation

The probability of a pixel classified as a background
drawn from a probability distribution can be estimated by
a mixture of density functions. Assuming the parametric
form of the mixture is Gaussian, probability of observing
background is:

g
P(x) = Zwi nx, 4, %;)
i=1
Where x is the pixel value, W is the prior, g is the number
of Gaussians, and 77 is the Gaussian form characterized by
the mean # and covariance X. Each pixel is then defined
by its first order statistics in the 4D vector (R,G,B,T) as

i=< >
follow: 1 wmg, R Gmg, s chg’ "lvcg’ Gvcg where

IR = infrared, VC = Video Channel € {R,G,B}, and g =
number of Gaussians. We assume that R, G, B, T are in-
dependent. I represents a solution instance; we maintain a
matrix (rows of I) to represent the solution space.

3.2 Physical Models

The algorithm in Table 1 uses the physics-based predic-
tions in its evaluation phase. Models of bi-directional
reflectance distribution functions (BRDF) and thermal
equilibrium based on conservation of energy are used to
predict surface color and temperature in the visible and
longwave IR. The models are briefly described here.

3.2.1 Physical Models of Reflectance

Several reflectance models including the lambertian,
Phong, dichromatic [8] and Ward [11] models have been
developed to describe the reflectance due to normal,
forescatter and backscatter distributions. We utilize the
dichromatic model:

L(A, &) = Li(A, &) + Ly(A,8) =mi(&) ci(X) + my(&) cu(A);
where L is the total reflected intensity, L; and L, are re-
flected intensities due to surface and subsurface respec-
tively, m; and m, are geometric terms, c; and c, are rela-
tive spectral power distribution (SPD) of the surface and
subsurface respectively, and & is a vector representing
incident and reflected angles with respect to surface nor-
mal. The dichromatic model is useful in describing the
reflection from inhomogeneous opaque dielectric materi-
als (e.g., plastics). It is also useful in describing material
colors since the SPD of the reflected light due to subsur-
face is decoupled from the geometric terms. To calculate
the invariant body color, the image is segmented into re-
gions with uniform reflectivity. For each region, pixel
values in the RGB space are formed into a matrix M of
size n X 3 where n is the number of rows (pixels) and 3
represents R,G, and B values. Singular value decomposi-
tion is then applied to M and the singular vector corre-
sponding to the largest singular value is selected as the
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body color (cy,), which is the predicted surface color [6].

3.2.2 Thermal Physical Model

For predicting surface temperatures in the longwave IR,
the following conservation of energy model is used. E;, =
Eout 5 Eowt = Eaa + Ey + Ecq ; Where E;, is the input en-
ergy, E, is the output energy described by three phe-
nomenon E.4 (energy radiated), E., (energy convected),
and E.4 (energy conducted). Models for each energy flux
is described in details in [6]. Briefly the following models
are used to describe each of the above fluxes:

Ein = Edirect T Esiytignt T Eatm

Edirect =(1089.5/ma) ¢ 021 ™)

Eum = E(BB,Ta) {1-[0.261 ¢ 77" %4 @B T2 where
Egireet = direct irradiation due to sun, Egyiigne = irradiation
due to sky = (40-70 W/m®), E,, = irradiation due to upper
atmosphere, m, = The number of air masses (m, = se-
cant(Z)), T, = Air temperature, E(BB,T,) = radiation of a
blackbody at T, temp, and Z = sun’s Zenith angle.

E,.q is estimated based on Stephen-Boltzman law:

E, = 6 T*, where 6 = 5.669 x 10”® watts/m* Kelvin* and
the subscript b is for blackbody which is capable of 100%
absorption (or emission) of energy.

The convected heat flux is given by: E, = h., (Ts - Teo)
where h,, is the convective heat transfer function which is
a complex phenomena, Ts and Teo are surface and fluid
temperatures respectively. For laminar flow, h,, can be
roughly estimated by the following empirical model:
h=17 |Ts-Tal”+ (6 Va*®) / L% where Va = wind
speed; L = characteristic Lateral dimension of surface, Ts
and Ta are surface and air temperature respectively.

The conducted heat flux is described by:

E.a=A (T2 -T1)/(L/k), where A is the area, T2-T1 is
the differential temperature and L/k is called the thermal
resistance or R-value and is tabulated for many materials.
The above equilibrium model is solved for Ts which is the
predicted temperature.

3.3 Background Model Estimation

The cooperative coevolutionary (CC) algorithm in Table 1
is used to select an optimal representation for the back-
ground based on the recent past observation detection
results, and physics-based predictions.

The CC algorithm utilized here is a recent evolutionary
paradigm that has been applied to optimization problems
[7]. The success of CC depends on 4 criteria: 1) problem
decomposition, 2) interdependability, 3) credit assign-
ment, and 4) population diversity. Our sensor fusion algo-
rithm satisfies all four criteria’s since a) our problem is
naturally decomposed (IR and video), b) our representa-
tion (matrix of mixture of Gaussians) provides interde-
pendencies between subcomponents, ¢) the objective (or
fitness) function minimizes the physics-based prediction

in both IR and video, and d) population diversity is main-
tained by roulette wheel selection method.

An important part of the evolutionary algorithm is the
evaluation function, referred to as the fitness function. We
provide a suitable fitness function that integrates the sta-
tistics collected by the system and the physical models
that are directed by the contextual information (environ-
mental conditions).

Table 1. Algorithm for learning background model.

Evolutionary Adaptive Background Modeling
T = Training set which includes prediction, observation,
and previous detection results per pixel;
Note: An organism represents a solution.
CC ALGORITHM ----------—————-

For each pixel
Create and initialize 4 subpopulations (see Section 3.1).

Loop
Build 4 organisms (e.g., solution space)
Evaluate organisms using the training set T
Store the best organism
For each subpopulation
Evolve each subpopulation (Selection, Mutation,
Crossover)
EndFor
Until stop Condition
Return the best organism
EndFor

3.3.1 Fitness Function

For each channel, a population of individuals (see 3.1)
is initially created randomly. These individuals are main-
tained both for the IR (temperature) and the video sensor
(RGB). Let an individual I in a population be represented
as: I=<wy, W, oy, . . ., Wi,y O™
Let: T represent Temperature or RGB values
T = Observed values, j = 1 .. n ; n = window in the past

j
T, = Predicted values by Physics

J

P(T) = The probability distribution.

We keep a moving window of recent past n frames. This
recent window is used as groundtruth, G, for training ex-
amples. Unlike most other work that only uses the last or
current observation (frame) to update the mixture of
Gaussians, we elect to keep a window of frames. Let

{1 Background

0 Foreground

G, =
{j=1.n}

and individual’s statistical estimation F():

n

F(y =21 Z[GjP(TOb/) +(1-G,)1- P(Tob,))}

J=1
The above function is only based on the past and current
statistics. To tie the knot with the physics, we introduce
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the following function, named credibility function. This
function provides a credibility measure as to how close
our observations come to the predicted value.

Our physics prediction should be more credible if the ob-
served value is detected as background, when the physics-
based prediction also agrees with the observed values for
the background. Moreover, if the physics predicts a very
different value for the background and our system has
actually detected the pixel value as the foreground, then
the physics may still be credible. On the other hand, if we
have classified a pixel as background where our physics is
predicting otherwise, we must be able to assign a low
credibility to our physics prediction. Similarly if the phys-
ics prediction is very close to that of the observed value
but the system has detected the pixel as foreground, then
the physics prediction may not be reliable and a LOW
credibility must be assigned. To realize the above, the
following credibility function, C, is provided:

‘Tobj_TPj‘

T

's6 T"b’_TPfL(l G
ol = L7 T (1-G X 1-
TT 4T J " )
ob j ])]

- )
C - e nj:l obj P

where vectors G, T,, and T, are defined as before and o
decides the rate of credibility function. As the observed
values T, agree closer with the predicted values T, for a
particular decision G, then the value of the credibility ap-
proaches 1. For example, it is easy to verify that in the
extreme case where all the previous n frames were back-
ground, and that the predicted values matched the ob-
served values, the sensor will get a credibility of 1.
Given F(I) and the credibility function C for individuals
for both IR and video, then, a fitness function for an or-
ganism (solutions) made of both IR and video species can
be realized as follows:

1:organism (<Ivideoa IIR>) = Cvideo F([video) + CIR F([IR)
Above equation is used for evaluating the organisms
formed by the video and IR signals. The parameter o
adjusts the importance of the role the credibility function
plays in the fitness function. o can be adjusted depending
on how fast the credibility function is desired to be influ-
enced by the agreement between the physics prediction
and actual observations. Furthermore, roulette wheel se-
lection method, a single point crossover operator with a
crossover rate of 0.8, and mutation rate of 0.01 for a
population size of 60 per organism are used.

4. Experiments

The data was gathered at a typical urban location with the
latitude 33:50:06 and longitude 117:54:49, from 15:30:00
on January 21, 2003 till 14:24:00 January 22, 2003. Ini-
tially, from 15:30:00 till 17:07:04, data was collected at
the rate of 1 frame every 2 seconds, then the temporal
resolution was changed to 1 frame per 10 second for the
rest of the data collection period. Two cameras, a FLIR

system thermal camera operating at 7-13 um and an Intel
web-cam operating in the visible range were utilized for
data acquisition. The thermal camera was fully radiomet-
ric, which means that the pixel values obtained by the
camera were thermal. The thermal camera included self-
calibration that at specified intervals adjusted to internal
thermal noise. The radiation-to-temperature conversion
was done automatically by the camera for the default val-
ues of emissivity = 0.92, air and ambient temperatures =
280 Kelvin, distance to target = 100 m, and humidity =

50%.
Sunrise: East "I:X’

0
.,
.
.,
‘e
.A

Sunset: West

Figure 2. Position of the cameras with respect to the
scene and the direction of the sun’s path.

The video camera was attached to top of the thermal
camera on a tripod (see Figure 2). Both cameras were
located 20 feet above the ground looking downward at the
scene at an angle of approximately 25°. In addition to the
thermal and the video cameras, a complete weather station
was utilized to obtain weather data every minute. The
weather station included an anemometer, humidity sensor,
wind direction, two temperature sensors, and a barometer
sensor. All sensors and the cameras were controlled by a
PC. Data collection between the cameras and the weather
data was all synchronized through software control.

For spatial registration affine transformation was ap-
plied and to avoid temporal registration, both cameras
were triggered simultaneously and in parallel. For predict-
ing correct reflectance and thermal predictions, a split and
merge algorithm initially segmented the image where a
user initially labeled the segments into 5 regions, asphalt,
concrete, grass, bush, and unknown. Only statistical prop-
erties were utilized for the unknown surface types.

4.1 Physical Model Estimation and Predictions

For surface color estimation, the dichromatic model was
utilized. The results for the four different pre-segmented
surfaced is given in terms of unit vectors in the RGB
space. The values were obtained for various times and are
given in Table 2 at an hourly illumination condition. The
concrete and asphalt had similar vectors due to their neu-
tral color attributes. On the other hand, the chloroform in
the vegetation such as grass and bush causes the vectors to
be shifted toward green.

The average, and standard deviation for the reflectance
vectors for the four surfaces were: Asphalt = (0.8°, 0.5°),
Concrete = (1.1°, 0.6°), Grass = (1.7°, 1°), and Bush
=(3.9°, 2.9°), where the first number represents the aver-
age and the second represents standard deviation. Since
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vegetation include chlorophorms, the higher variation in
reflectance of grass and bush are contributed to their sur-
face specularity, which is not modeled by our algorithm.

For surface temperature prediction, the thermal models
of Section 3.2.2 were used. These predictions were used
by the fitness function in section 3.3.1. Figure 3 shows the
result of predictions superimposed on actual measure-
ments by the thermal camera. As shown, the models were
able to track temperature fluctuations for 4 different sur-
face types closely. The average difference between the
prediction and measurement for all surfaces were about
2° with standard deviation of 1.87°.

Table 2. Surface body color estimation (c;).

. Asphalt Concrete
Time

R G B R G B
8:30 |.5727 | 5726 | .5867 | .5813 | .582 | .5687
9:30 |.5714 | 5716 | .5889 | .5791 | .5797 | .5732
10:30 | .5773 | 5714 | 5862 | .5824 | .5824 | .567
11:30 | .5669 | .5676 | 597 | .5737 | .5745 | .5838
12:30 | .5695 | .5695 | .5927 | .5686 | .5749 | .5884
13:30 | .5682 | 568 | .5954 | .5767 | .5753 | .5801
14:30 | .5741| 572 | 5859 | .5681 | .5752 | .5886
15:30 | .5635| 552 | .6025 | .557 | .5723 | .6019
16:30 | .5623 | .5684 | .6006 | .5572 | .5802 | .594
17:30 | .5544 | .5668 | .6095 | .5566 | .5813 | .5935
. Grass Bush
Time

R G B R G B
8:30 | .6336 | .726 | .2672 | .5718 | .6239 | .5327
9:30 | .6343 | .7189 | .2844 | .5893 | .624 | .5132
10:30 | .6369 | .7128 | .2938 | .5662 | .6368 | .5234
11:30 | 632 | .7193 | .2883 | .5476 | .625 | .5563
12:30 | .6256 | .7376 | .2543 | .543 | .637 | .5471
13:30 | .6249 | .7364 | .2591 | .5749 | .6404 | .5093
14:30 | .621 7391 | 2611 | .5968 | .6338 | .4921
15:30 | .606 | .7505 | .2636 | .5639 | .6421 | .5193
16:30 | .604 | .7572 | .2486 | .6567 | .6369 | .4039
17:30 | 6231 | .738 | .259 | .6321 | .6357 | .4431

4.2 Detection Results

Moving object detection is performed after an initial back-
ground model is built. Once new thermal and video
frames are available, they are registered. The registered
image then contains red, green, blue, and temperature val-
ues at each pixel location. The cooperative coevolutionary
algorithm is used to build the background model. Each
pixel is updated independently. The background model is
periodically updated to track the environmental changes.
The following parameters were used in the cooperative
coevolutionary algorithm to update the background mod-
els: number of species = 4; population size = 60; cross-

over = single point; crossover rate = 0.8; mutation rate =
0.01; maximum number of generations = 60; training data
= 20 frames; number of Gaussians per sensor = 3; o. = 0.5.

Asphak: Measured Vs. Predicted Tenps.
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Figure 3. Measurement (blue) vs. predicted (red) sur-
face temperature values.

Once the background model is available, for each incom-
ing frame, each pixel is compared to its corresponding
model and if its value is within 3 standard deviation of any
of its models, it is classified as background. This informa-
tion is kept in a binary image where a detected moving
pixel is a binary 1 (white) and a background pixel is 0
(black). These binary frames provide training data for the
next background model update. In the following exam-
ples, in addition to the thermal IR and video frames, de-
tection for each sensor and the fused detection for the reg-
istered image are provided. Moreover, the following con-
fusion matrix is given for the results:

% moving Obj correctly detected | % moving Obj missed

% Background missed % Background correctly detected

e Example 1: Figure 4 shows example frames detected
in the afternoon and early evening hours. During this pe-
riod, illumination and heat exchanges are rapid. Depend-
ing on the heat stored and reradiated by an object and the
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background the object may be observed having very simi-
lar temperatures as the background (IR frames 2408 and
2685) or very different (IR frames 2422 and 2676). In
frame 2408, video signal was much stronger, providing
sharp contrast for the moving objects. Despite the lower
performance of the IR, the objects were recovered by the
video. Similarly, in frame 2422, the detection result of the
IR was further enhanced by the registered video as is
shown in the fused detected frame. Frames 2676 and 2685
are during early evening hours. The video camera had a
25 lux minimum illumination requirement; therefore, al-
though the scene was not totally dark, the video signal
during the night time was very weak. This was compen-
sated by the strong IR signal; however, the maximum de-
tection was obtained by IR only.

by the video. The lights from the vehicles were very visi-
ble and were detected as part of the moving object, but the
surface reflection of the lights clearly did not contribute to
misdetection. This is due to the fact that the physics-based
prediction assigns low credibility to the video signal;
hence, low reflections are not detected. In effect this plays
a role in deciding how important a sensor’s observations
are. If a video pixel gets a low credibility, then its values
are less meaningful; therefore, in order to observe a
change, the signal must be very strong (e.g., front head
lights of the cars). Since the front head lamps of most ve-
hicles are halogen and radiate heat, they are also observed
as part of the vehicle in the IR image, thus, they are also
being detected as part of the vehicle.

Time
Frame #

19:04:42
2726

19:07:15

06:20:43

06:25:09
6718

2741

6692

Time 16:58:03 16:58:34 18:56:11 18:57:43

Frame #2408 2422 2676 2685

Vidco --

Registered E

Video i

Detected

(IR only)

[Confusion

Matrix] .69 31
.01 .99

Detected

(Video

only)

[Confusion

Matrix] . .

Detected

FUSED

(IR+VIDE

0)

[Confusion

Matrix]

Figure 4 Example 1: Mixed-good and bad IR and
video at various times in the afternoon and evening.

e Example 2: Figure 5 is an example where the detec-
tion algorithm relied heavily on one sensor, IR. Due to
lack of illumination and video sensor’s low sensitivity,
objects could not be detected by video only. A good ex-
ample is frame 2726 where a car and a person were in the
scene. These were not observed in the video; however,
they were present in the IR image and were clearly de-
tected in both IR and the fused frame. Frames 2741, 6692
and 6718, indicate that the detection was not influenced
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Detected
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Figure 5 Example 2. Good to excellent IR signal, bad
video signal at night. (Note: Due to lack of video con-
trast no groundtruth could be obtained.)

e Example 3: Figure 6 is an example of dramatic illu-
mination changes during the early sunrise and early morn-
ing hours. During these periods, the environment changes
radically change due to the energy of the sun. The sensors
must adapt to these rapid changes. Figure 8 shows the
thermal changes on different surfaces that are tracked by
the physics-based models. As shown, the slope of the
temperature values change radically during this period.
However, the physics-based models are able to follow
these changes and provide high credibility values that
affect the background models build by the algorithm. As
the illumination reaching the video camera is increased,
the detection due to video gets better. This is shown in
frames 6792 and 6820 where the video camera began par-
ticipating in the detection. This is indicated by the in-
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crease in the detection in the fused image versus the IR or
video only images.

Time 06:37:46 06:42:33 06:54:27

Frame # 6792 6820 6890

IR

Video

Registered
Video

Detected
(IR Only)

[Confusion
matrix]

Detected
(Video only)

[Confusion
matrix]

Detected
FUSED
(IR+Video)

[Confusion 93 1.0 83 | .17 99 | .01
matrix] .99 .01 | .99 .01 | .99

=

Figure 6. Example 3: Fusion while illumination
changes at sunrise.

e Example 4: Figure 7 is an example of early morning,
noon and early afternoon hours. As the sun comes up, the
surfaces are heated up by the incoming energy from the
sun, the increase in the surface temperatures approaches
closer to the temperatures of some moving object sur-
faces. Depending on the moving object surface tempera-
tures and emissivities, the contrast in the IR can be radi-
cally different from frame to frame. This is obvious be-
tween frames 6954 and 8486 for example. Frame 6954
represents an image in the morning with a person in the
scene. Surface temperatures are still lower than that of the
human body; moreover, human body’s emissivity is high
(0.98) compared to the background surfaces. The human
is clearly visible in the IR image. Although not very visi-
ble in the video image of frame 6954, the human is also in
that image; this is clearer in the registered image. Both
sensors provided excellent contrast in this case and the
person was clearly detected.

Frames 8486 and 9350 show moving objects later in the
day when surfaces have reached higher temperatures. In
this case, it is possible to have a moving object that may
have closer temperature to the background surface as is

indicated by both of these frames. On the other hand,
video provided excellent signal and contrast. Many pixels
were missing from the detected IR only, but the final
fused detection recovered most of these missed pixels on
moving objects.

Time 07:05:20
Frame #

IR

Video

Registered
Video

Detected
(IR Only)

[Confusion
matrix]

Detected
(Video only)

[Confusion
matrix]

Detected
FUSED
(IR+Video)

93 | .07 .96 .04 56 | 44

[Confusion
matrix] .01 .99 .02 | 98 .01 .99

Figure 7. Example 4: Mixed IR and good video signal.
4.3 Performance Analysis

To compare the performance of the detection algorithm
for sensor fusion, we utilize the Receiver Operating Char-
acteristic (ROC) curves and define the probability of de-
tection as percentage of moving object correctly detected
and probability of false alarm as percent of background
classified as moving object.

We selected frames representing afternoon, early morning
and high noon for this analysis. The nighttime was not
selected since no video signal was available at night and
the detection algorithm relied only on the IR sensor; this
was explained in example 2 above. The first ROC curve,
Figure 8(a), represents an afternoon time. An example of
this is frame 2408 in Figure 7. As is indicated by example
1 frame 2408 and this ROC curve, the video signal oper-
ated at a higher rate than the IR signal. The fusion method
operated at a higher level than both the video and the IR.
The ROC curve of Figure 8(b) is an example of early
morning hours. This figure is a contrast to that of Figure
8(a) in the afternoon. In this case the detection rates for
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both the IR and the fused image were high where the
video sensor operated only nominally. This is again due to
the fact that during early morning hours, a large gradient
may exist between natural surface temperatures and those
of animated objects with internal sources of energy such
as vehicles and humans. This is due to the fact that a great
deal of energy has been dissipated to the environment
throughout the night. In addition, the video signal, as indi-
cated in Figure 6, example 3, is rapidly changing due to
the illumination changes when sun is coming up.

1.0
0.9
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0O s
- = = = =Wideo
0.7 [ IR

¥ Fused
-
0.6 - T T T T T

0.0 02 04 06 0.8 1.0

1.00
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070 +— . . . :

1.00
0.96
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0.88

0.84 K
0.0 0.2 0.4 0.6 0.8 1.0

Pf
C

Figure 8. ROC curves for Vario(us) periods of the day.
(a) afternoon-evening, (b) early morning, (¢) morning-
noon.

The third ROC curve, Figure 8(c), is an example of how
fusion can enhance the detection when both sensors may
be operating at lower rates, yet the fused version will be
able to detect at higher rate. This is an example of when
cooperation between sensors can play a complementary
role. The fused detection in this case operates at higher
level than each single sensor alone. Partly this is due to
the fact that different sensors may detect different parts of
an object. So, one ought to expect sensor fusion to do
much better in detecting more pixels on the object than
one sensor alone. This is also observed from frames 8646
and 9340 of example 4 in Figure 7 when for example, the
detected IR and video frames have detected different part
of the same object.

These ROC curves also indicate that as the time of day
changes, the dynamic sensor fusion introduced here can
automatically adapt to environmental changes. This
adaptation is also in the form of adapting to the best
sensor at the time. The cooperation among sensors can
also take on a complementary role when different sensors
are able to detect different part of an object that may not

Pd

detect different part of an object that may not be visible to
one another. This adaptation is done in a cooperative man-
ner where sensors have already participated in the model-
building phase.

5. Conclusions

In this paper a novel physics-based sensor fusion tech-
nique for moving object detection was introduced. The
sensor fusion architecture integrated the statistical and
phenomenology of the sensors in the visible and longwave
IR through an evolutionary computational model. Our
representation, matrix of mixture of Gaussians, along with
the cooperative coevolutoionary search algorithm inte-
grated the contextual information through the physics-
based and statistical models. We showed that our fusion
model adapted to various illumination conditions and is
suitable for detection under variety of environmental con-
ditions.
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