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Abstract 

A robust moving object detection system for an out-
door scene must be able to handle adverse illumination 
conditions such as sudden illumination changes or lack of 
illumination in a scene. This is of particular importance 
for scenarios where active illumination cannot be relied 
upon. Utilizing infrared and video sensors, we propose a 
novel sensor fusion algorithm that automatically adapts 
to the environmental changes that effect sensor measure-
ments. The adaptation is done through a new cooperative 
coevolutionary algorithm that fuses the scene contextual 
and statistical information through a physics-based 
method. Our sensor fusion algorithm maintains high de-
tection rates under a variety of conditions and sensor 
failure. The results are shown for a full 24 hour diurnal 
cycle.

1. Introduction 

Over the past several decades, many approaches have 
been developed for moving object detection for indoor 
and outdoor scenes. Moving object detection methods fall 
into two categories: (a) feature-based methods [10], and 
(b) featureless methods (e.g., image subtraction, optical 
flow, statistical modeling) [1, 3-5,9, 12]. Each of these 
methods offers advantages that are exploited for different 
applications. For example, image subtraction is simple 
and may suffice for indoor type illuminations, temporal 
differencing can be adopted for slow moving objects, op-
tical flow is useful for a moving camera platform and sta-
tistical modeling can capture the background motion.  
Some of the shortcomings of the current approaches for 
moving detection are: 1) None of these approaches ad-
dress the problem of low light or no light conditions, 2) 
No contextual information is used to update the Guassian 
parameters, 3) Generally, a large number of observations 
are required before a background model can be learned 
effectively, 4) All the previous algorithms have been ap-
plied to a single sensing modality (usually visible or near-
infrared) and no results have been shown for extreme 
conditions, for example, no illumination, sunset, or sunrise 
condition. In order to overcome illumination conditions 
such as low or no light conditions, other sensing modali-
ties such as cameras operating in near or longwave IR 
have been utilized [2]. However, these sensing modalities 

could still fail due to similar conditions in their respective 
bandwidth. For example, in a longwave (thermal) IR a 
subject’s temperature could reach that of the background, 
thus having limited contrast which may cause detection 
failure.  
Multisensor fusion attempts to resolve this problem by 
incorporating benefits of different sensing modalities. The 
advantages of multisensor fusion are improved detection, 
increased accuracy, reduced ambiguity, robust operation, 
and extended coverage. Sensor fusion can be performed at 
different levels including signal or pixel level, feature 
level and decision level.  
Our algorithm provides a novel sensor fusion algorithm 
that fuses longwave (thermal) and visible sensors in a uni-
fied manner. By utilizing the IR signal, we can overcome 
some of the limitations of the visible cameras and by 
combining the visible and IR signal we improve the detec-
tion under variety of conditions. 
The salient features of our approach presented in this pa-
per are given below: a) consistent data representation: all 
sensing modalities are represented by a matrix of mixture 
of Gaussians in a consistent manner. b) physical models:
sound physical models are used for each sensing modality 
(e.g., visible and IR) to provide prediction for each signal. 
c) evolutionary-based fusion: a cooperative coevolution-
ary algorithm is developed to systematically fuse and inte-
grate information from both statistical and physical mod-
els into a unified structure for detection. d) context-based 
adaptation: environmental conditions such as ambient air 
temperature, wind velocity, surface emissivities, etc., are 
directly incorporated into the detection algorithm and in-
fluence the fusion strategies.  

2. Related Work and Motivation 

Sensor fusion approaches generally fall into one of the 
following categories: statistical-based, AI-based, algo-
rithmic-based and physics-based. The AI and algorithmic-
based paradigms are less suited for dynamic conditions 
whereas the statistics and physics-based paradigms are the 
method of choice for integrating sensor information that 
can change over time.   
We provide a new sensor fusion technique that combines 
the statistical and physics-based fusion paradigms through 
an evolutionary process. We overcome the disadvantage 
of each of these paradigms by including suitable sensor 
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models that have enormous generalizing power. This gen-
eralizing power is then used to complement the limited 
available sensor data that is required by the statistical 
methods.  The fusion is performed at the pixel level where 
the information loss is minimal. 

3. Technical Approach 

The sensor fusion architecture for moving object detection 
is depicted in Figure 1. Observations from the sensors 
along with the external conditions, which carry the 
contextual information, are used to build statistical 
(mixture of Gaussian) background model. The contextual 
information is also used to update values of internal 
physical models. Physical models include reflectance 
models for predicting image intensity values and thermal 
models for predicting background surface temperature 
values. Unlike the previous work that updates the back-
ground models solely based on the current observations, 
we incorporate our physical models into the adaptive loop. 
The physical models are integrated with the statistical 
models through a cooperative coveolutionary process [7]. 
The cooperative coevolutionary process estimates the best 
representation for the background per pixel. This is done 
through genetic based evolutionary process that searches 
for the optimal representation based on the current, and 
recent past observations and detection results in addition 
to the predictions given by the physical model.  
Our representation of a matrix of mixture of Gaussians 
(described in section 3.1) includes Gaussian parameters 
for the infrared and visible sensors (including RGB chan-
nels). A population of this representation is maintained as 
a pool of individuals for the evolutionary process. Once 
the evolutionary process is stopped the best individual 
represents the background model of that pixel. In this 
manner, the contextual information plays an active role in 
contributing to the most ideal sensor for a particular con-
dition. The detection algorithm in Figure 1 requires a 
model of the background. This model is estimated by a 
mixture of Gaussians per pixel. Table 1 shows this proc-

ess. The details are explained in the following sub-
sections. 

3.1  Representation 

The probability of a pixel classified as a background 
drawn from a probability distribution can be estimated by 
a mixture of density functions. Assuming the parametric 
form of the mixture is Gaussian, probability of observing 
background is: 
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Where x is the pixel value, W is the prior, g is the number 
of Gaussians, and η is the Gaussian form characterized by 
the mean µ and covariance Σ. Each pixel is then defined 
by its first order statistics in the 4D vector (R,G,B,T) as 
follow:  Î = <w
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IR = infrared, VC = Video Channel ∈ {R,G,B}, and g = 
number of Gaussians. We assume that  R, G, B, T are in-
dependent. Î represents a solution instance; we maintain a 
matrix (rows of Î) to represent the solution space. 

3.2  Physical Models  

The algorithm in Table 1 uses the physics-based predic-
tions in its evaluation phase.  Models of bi-directional 
reflectance distribution functions (BRDF) and thermal 
equilibrium based on conservation of energy are used to 
predict surface color and temperature in the visible and 
longwave IR. The models are briefly described here. 

3.2.1  Physical Models of Reflectance 

Several reflectance models including the lambertian, 
Phong, dichromatic [8] and Ward [11] models have been 
developed to describe the reflectance due to normal, 
forescatter and backscatter distributions. We utilize the 
dichromatic model: 
L(λ, ê) = Li(λ, ê) + Lb(λ,ê) =mi(ê) ci(λ) + mb(ê) cb(λ); 
where L is the total reflected intensity, Li and Lb are re-
flected intensities due to surface and subsurface respec-
tively, mi and mb are geometric terms, ci and cb are rela-
tive spectral power distribution (SPD) of the surface and 
subsurface respectively, and ê is a vector representing 
incident and reflected angles with respect to surface nor-
mal. The dichromatic model is useful in describing the 
reflection from inhomogeneous opaque dielectric materi-
als (e.g., plastics). It is also useful in describing material 
colors since the SPD of the reflected light due to subsur-
face is decoupled from the geometric terms.  To calculate 
the invariant body color, the image is segmented into re-
gions with uniform reflectivity. For each region, pixel 
values in the RGB space are formed into a matrix M of 
size n × 3 where n is the number of rows (pixels) and 3 
represents R,G, and B values. Singular value decomposi-
tion is then applied to M and the singular vector corre-
sponding to the largest singular value is selected as the 
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Figure 1. Sensor Fusion Architecture. 
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body color (cb), which is the predicted surface color [6]. 

3.2.2  Thermal Physical Model 

For predicting surface temperatures in the longwave IR, 
the following conservation of energy model is used. Ein = 
Eout ; Eout = Erad + Ecv + Ecd ; Where Ein is the input en-
ergy, Eout is the output energy described by three phe-
nomenon Erad (energy radiated), Ecv (energy convected), 
and Ecd (energy conducted). Models for each energy flux 
is described in details in [6]. Briefly the following models 
are used to describe each of the above fluxes: 
Ein = Edirect + Eskylight + Eatm

Edirect =(1089.5/ma) e(-0.2819 ma)

Eatm = E(BB,Ta) {1-[0.261 e –7.77 * 10-4 (273-Ta)2]} where 
Edirect = direct irradiation due to sun, Eskylight = irradiation 
due to sky ≈ (40-70 W/m2), Eatm = irradiation due to upper 
atmosphere, ma = The number of air masses (ma ≈ se-
cant(Z)), Ta = Air  temperature, E(BB,Ta) = radiation of a 
blackbody at Ta temp, and Z = sun’s Zenith angle. 
Erad is estimated based on Stephen-Boltzman law:  
Eb = σ T4

, where σ = 5.669 × 10-8 watts/m2 Kelvin4 and 
the subscript b is for blackbody which is capable of 100% 
absorption (or emission) of energy. 
The convected heat flux is given by: Ecv = hcv (Ts - T∞)
where hcv is the convective heat transfer function which is 
a complex phenomena, Ts and T∞ are surface and fluid 
temperatures respectively. For laminar flow, hcv can be 
roughly estimated by the following empirical model:  
h = 1.7  Ts - Ta 1/3 + (6 Va0.8) / L0.2 where Va = wind 
speed; L = characteristic Lateral dimension of surface, Ts 
and Ta are surface and air temperature respectively. 
The conducted heat flux is described by: 
Ecd = A (T2 – T1) / (L / k), where A is the area, T2-T1 is 
the differential temperature and L/k is called the thermal 
resistance or R-value and is tabulated for many materials. 
The above equilibrium model is solved for Ts which is the 
predicted temperature. 

3.3  Background Model Estimation 

The cooperative coevolutionary (CC) algorithm in Table 1 
is used to select an optimal representation for the back-
ground based on the recent past observation detection 
results, and physics-based predictions.  
The CC algorithm utilized here is a recent evolutionary 
paradigm that has been applied to optimization problems 
[7]. The success of CC depends on 4 criteria: 1) problem 
decomposition, 2) interdependability, 3) credit assign-
ment, and 4) population diversity.  Our sensor fusion algo-
rithm satisfies all four criteria’s since a) our problem is 
naturally decomposed (IR and video), b) our representa-
tion (matrix of mixture of Gaussians) provides interde-
pendencies between subcomponents, c) the objective (or 
fitness) function minimizes the physics-based prediction 

in both IR and video, and d) population diversity is main-
tained by roulette wheel selection method. 
An important part of the evolutionary algorithm is the 
evaluation function, referred to as the fitness function. We 
provide a suitable fitness function that integrates the sta-
tistics collected by the system and the physical models 
that are directed by the contextual information (environ-
mental conditions).  

Table 1. Algorithm for learning background model. 

Evolutionary Adaptive Background Modeling
T = Training set which includes prediction, observation, 
and previous detection results per pixel;  
Note: An organism represents a solution. 

----------------------  CC ALGORITHM ------------------ 
For each pixel  

Create and initialize 4 subpopulations (see Section 3.1).  

Loop
       Build 4 organisms (e.g., solution space) 
       Evaluate organisms using the training set T 
       Store the best organism 
       For each subpopulation 
           Evolve each subpopulation (Selection, Mutation, 
                                                          Crossover)  
        EndFor 

Until stop Condition 
Return the best organism 

EndFor 

3.3.1  Fitness Function 

For each channel, a population of individuals (see 3.1) 
is initially created randomly. These individuals are main-
tained both for the IR (temperature) and the video sensor 
(RGB). Let an individual I in a population be represented 
as:  I = <w1, µ1, σ1, . . ., wm,µm, σm>
 Let: T represent Temperature or RGB values  
Tob

j
 = Observed values, j = 1 .. n ; n = window in the past  

Tp
j
 = Predicted values by Physics 

 P(T) = The probability  distribution. 
We keep a moving window of recent past n frames. This 
recent window is used as groundtruth, G, for training ex-
amples. Unlike most other work that only uses the last or 
current observation (frame) to update the mixture of 
Gaussians, we elect to keep a window of frames. Let  
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The above function is only based on the past and current 
statistics. To tie the knot with the physics, we introduce 
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the following function, named credibility function. This 
function provides a credibility measure as to how close 
our observations come to the predicted value.   
Our physics prediction should be more credible if the ob-
served value is detected as background, when the physics-
based prediction also agrees with the observed values for 
the background. Moreover, if the physics predicts a very 
different value for the background and our system has 
actually detected the pixel value as the foreground, then 
the physics may still be credible. On the other hand, if we 
have classified a pixel as background where our physics is 
predicting otherwise, we must be able to assign a low 
credibility to our physics prediction. Similarly if the phys-
ics prediction is very close to that of the observed value 
but the system has detected the pixel as foreground, then 
the physics prediction may not be reliable and a LOW 
credibility must be assigned. To realize the above, the 
following credibility function, C, is provided: 

e p job j

P job j
j

p job j

P job j
n

j
j TT

TT
G

TT

TT
G

nC +

−
−−+

+

−
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where vectors G, Tob and Tp are defined as before and α
decides the rate of credibility function.  As the observed 
values Tob agree closer with the predicted values Tp for a 
particular decision G, then the value of the credibility ap-
proaches 1. For example, it is easy to verify that in the 
extreme case where all the previous n frames were back-
ground, and that the predicted values matched the ob-
served values, the sensor will get a credibility of 1. 
Given F(I) and the credibility function C for individuals 
for both IR and video, then, a fitness function for an or-
ganism (solutions) made of both IR and video species can 
be realized as follows:  

Forganism  (<Ivideo, IIR>) = Cvideo F(Ivideo) + CIR F(IIR)
Above equation is used for evaluating the organisms 
formed by the video and IR signals.  The parameter α
adjusts the importance of the role the credibility function 
plays in the fitness function. α can be adjusted depending 
on how fast the credibility function is desired to be influ-
enced by the agreement between the physics prediction 
and actual observations. Furthermore, roulette wheel se-
lection method, a single point crossover operator with a 
crossover rate of 0.8, and mutation rate of 0.01 for a 
population size of 60 per organism are used.   

4. Experiments 

The data was gathered at a typical urban location with the 
latitude 33:50:06 and longitude 117:54:49, from 15:30:00 
on January 21, 2003 till 14:24:00 January 22, 2003.  Ini-
tially, from 15:30:00 till 17:07:04, data was collected at 
the rate of 1 frame every 2 seconds, then the temporal 
resolution was changed to 1 frame per 10 second for the 
rest of the data collection period. Two cameras, a FLIR 

system thermal camera operating at 7-13 µm and an Intel 
web-cam operating in the visible range were utilized for 
data acquisition. The thermal camera was fully radiomet-
ric, which means that the pixel values obtained by the 
camera were thermal. The thermal camera included self-
calibration that at specified intervals adjusted to internal 
thermal noise. The radiation-to-temperature conversion 
was done automatically by the camera for the default val-
ues of emissivity = 0.92, air and ambient temperatures = 
280 Kelvin, distance to target = 100 m, and humidity = 
50%.  

Figure 2. Position of the cameras with respect to the 
scene and the direction of the sun’s path. 

The video camera was attached to top of the thermal 
camera on a tripod (see Figure 2). Both cameras were 
located 20 feet above the ground looking downward at the 
scene at an angle of approximately 25o. In addition to the 
thermal and the video cameras, a complete weather station 
was utilized to obtain weather data every minute. The 
weather station included an anemometer, humidity sensor, 
wind direction, two temperature sensors, and a barometer 
sensor. All sensors and the cameras were controlled by a 
PC. Data collection between the cameras and the weather 
data was all synchronized through software control.  

For spatial registration affine transformation was ap-
plied and to avoid temporal registration, both cameras 
were triggered simultaneously and in parallel. For predict-
ing correct reflectance and thermal predictions, a split and 
merge algorithm initially segmented the image where a 
user initially labeled the segments into 5 regions, asphalt, 
concrete, grass, bush, and unknown. Only statistical prop-
erties were utilized for the unknown surface types.   

4.1  Physical Model Estimation and Predictions 

For surface color estimation, the dichromatic model was 
utilized. The results for the four different pre-segmented 
surfaced is given in terms of unit vectors in the RGB 
space. The values were obtained for various times and are 
given in Table 2 at an hourly illumination condition. The 
concrete and asphalt had similar vectors due to their neu-
tral color attributes. On the other hand, the chloroform in 
the vegetation such as grass and bush causes the vectors to 
be shifted toward green.  
The average, and standard deviation for the reflectance 
vectors for the four surfaces were: Asphalt = (0.8o, 0.5o),
Concrete = (1.1o, 0.6o), Grass = (1.7o, 1o), and Bush 
=(3.9o, 2.9o), where the first number represents the aver-
age and the second represents standard deviation. Since 

Sunrise: East

Sunset: West 

Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW’04) 
1063-6919/04 $ 20.00 IEEE 



vegetation include chlorophorms, the higher variation in 
reflectance of grass and bush are contributed to their sur-
face specularity, which is not modeled by our algorithm.  

For surface temperature prediction, the thermal models 
of Section 3.2.2 were used. These predictions were used 
by the fitness function in section 3.3.1. Figure 3 shows the 
result of predictions superimposed on actual measure-
ments by the thermal camera. As shown, the models were 
able to track temperature fluctuations for 4 different sur-
face types closely. The average difference between the 
prediction and measurement for all surfaces were about 
2oc with standard deviation of 1.87oc.

Table 2. Surface body color estimation (cb).

Asphalt Concrete 
Time 

R G B R G B
8:30 .5727 .5726 .5867 .5813 .582 .5687 
9:30 .5714 .5716 .5889 .5791 .5797 .5732 
10:30 .5773 .5714 .5862 .5824 .5824 .567 
11:30 .5669 .5676 .597 .5737 .5745 .5838 
12:30 .5695 .5695 .5927 .5686 .5749 .5884 
13:30 .5682 .568 .5954 .5767 .5753 .5801 
14:30 .5741 .572 .5859 .5681 .5752 .5886 
15:30 .5635 .552 .6025 .557 .5723 .6019 
16:30 .5623 .5684 .6006 .5572 .5802 .594 

17:30 .5544 .5668 .6095 .5566 .5813 .5935 

Grass Bush
Time 

R G B R G B
8:30 .6336 .726 .2672 .5718 .6239 .5327 

9:30 .6343 .7189 .2844 .5893 .624 .5132 

10:30 .6369 .7128 .2938 .5662 .6368 .5234 

11:30 .632 .7193 .2883 .5476 .625 .5563 

12:30 .6256 .7376 .2543 .543 .637 .5471 

13:30 .6249 .7364 .2591 .5749 .6404 .5093 

14:30 .621 .7391 .2611 .5968 .6338 .4921 

15:30 .606 .7505 .2636 .5639 .6421 .5193 

16:30 .604 .7572 .2486 .6567 .6369 .4039 

17:30 .6231 .738 .259 .6321 .6357 .4431 

4.2  Detection Results 

Moving object detection is performed after an initial back-
ground model is built. Once new thermal and video 
frames are available, they are registered. The registered 
image then contains red, green, blue, and temperature val-
ues at each pixel location. The cooperative coevolutionary 
algorithm is used to build the background model. Each 
pixel is updated independently. The background model is 
periodically updated to track the environmental changes. 
The following parameters were used in the cooperative 
coevolutionary algorithm to update the background mod-
els: number of species  = 4; population size = 60; cross-

over = single point; crossover rate = 0.8; mutation rate = 
0.01; maximum number of generations = 60; training data 
= 20 frames; number of Gaussians per sensor = 3; α = 0.5. 

Figure 3. Measurement (blue) vs. predicted (red) sur-
face temperature values.  
Once the background model is available, for each incom-
ing frame, each pixel is compared to its corresponding 
model and if its value is within 3 standard deviation of any 
of its models, it is classified as background. This informa-
tion is kept in a binary image where a detected moving 
pixel is a binary 1 (white) and a background pixel is 0 
(black). These binary frames provide training data for the 
next background model update. In the following exam-
ples, in addition to the thermal IR and video frames, de-
tection for each sensor and the fused detection for the reg-
istered image are provided. Moreover, the following con-
fusion matrix is given for the results: 

% moving Obj correctly detected % moving Obj missed 
% Background missed  % Background correctly detected  

• Example 1: Figure 4 shows example frames detected 
in the afternoon and early evening hours. During this pe-
riod, illumination and heat exchanges are rapid. Depend-
ing on the heat stored and reradiated by an object and the 
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background the object may be observed having very simi-
lar temperatures as the background (IR frames 2408 and 
2685) or very different (IR frames 2422 and 2676). In 
frame 2408, video signal was much stronger, providing 
sharp contrast for the moving objects. Despite the lower 
performance of the IR, the objects were recovered by the 
video. Similarly, in frame 2422, the detection result of the 
IR was further enhanced by the registered video as is 
shown in the fused detected frame. Frames 2676 and 2685 
are during early evening hours. The video camera had a 
25 lux minimum illumination requirement; therefore, al-
though the scene was not totally dark, the video signal 
during the night time was very weak. This was compen-
sated by the strong IR signal; however, the maximum de-
tection was obtained by IR only. 
Time 
Frame # 

16:58:03 
2408

16:58:34 
2422

18:56:11 
2676

18:57:43 
2685

IR 

Video 

Registered 
Video 

Detected 
(IR only) 

[Confusion 
Matrix] .38 .62 

.01 .99 
.85 .15 
.01 .99 

.84 .16 

.01 .99 
.69 .31 
.01 .99 

Detected 
(Video 
only)  
[Confusion 
Matrix] .92 .08 

.02 .98 
.84 .16 
.01 .99 

.08 .92 
0 1 

.03 .97 

.01 .99 

Detected 
FUSED
(IR+VIDE
O)  

[Confusion 
Matrix] 

.93 .07 

.06 .94 
.94 .06 
.01 .99 

.88 .12 

.01 .99 
.69 .31 
.01 .99 

Figure 4 Example 1: Mixed-good and bad IR and 
video at various times in the afternoon and evening.
• Example 2: Figure 5 is an example where the detec-
tion algorithm relied heavily on one sensor, IR. Due to 
lack of illumination and video sensor’s low sensitivity, 
objects could not be detected by video only. A good ex-
ample is frame 2726 where a car and a person were in the 
scene. These were not observed in the video; however, 
they were present in the IR image and were clearly de-
tected in both IR and the fused frame. Frames 2741, 6692 
and 6718, indicate that the detection was not influenced 

by the video. The lights from the vehicles were very visi-
ble and were detected as part of the moving object, but the 
surface reflection of the lights clearly did not contribute to 
misdetection. This is due to the fact that the physics-based 
prediction assigns low credibility to the video signal; 
hence, low reflections are not detected. In effect this plays 
a role in deciding how important a sensor’s observations 
are. If a video pixel gets a low credibility, then its values 
are less meaningful; therefore, in order to observe a 
change, the signal must be very strong (e.g., front head 
lights of the cars). Since the front head lamps of most ve-
hicles are halogen and radiate heat, they are also observed 
as part of the vehicle in the IR image, thus, they are also 
being detected as part of the vehicle. 
Time 
Frame # 

19:04:42 
2726

19:07:15 
2741

06:20:43 
6692

06:25:09 
6718

IR 

Video 

Registered 
Video 

Detected 
(IR Only) 

Detected 
(Video 
only) 

Detected 
FUSED 
(IR+Video)

Figure 5 Example 2. Good to excellent IR signal, bad 
video signal at night. (Note: Due to lack of video con-
trast no groundtruth could be obtained.)
• Example 3: Figure 6 is an example of dramatic illu-
mination changes during the early sunrise and early morn-
ing hours. During these periods, the environment changes 
radically change due to the energy of the sun. The sensors 
must adapt to these rapid changes. Figure 8 shows the 
thermal changes on different surfaces that are tracked by 
the physics-based models. As shown, the slope of the 
temperature values change radically during this period. 
However, the physics-based models are able to follow 
these changes and provide high credibility values that 
affect the background models build by the algorithm. As 
the illumination reaching the video camera is increased, 
the detection due to video gets better. This is shown in 
frames 6792 and 6820 where the video camera began par-
ticipating in the detection. This is indicated by the in-
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crease in the detection in the fused image versus the IR or 
video only images. 
Time 
Frame # 

06:37:46 
6792

06:42:33 
6820

06:54:27 
6890

IR 

Video 

Registered 
Video 

Detected 
(IR Only) 

[Confusion 
matrix] 

.86 .14 

.01 .99 
.49 .51 
0 1 

.98 .02 

.01 .99 

Detected 
(Video only) 

[Confusion 
matrix] 

.55 .45 
0 1 

.52 .48 
0 1 

.68 .32 

.01 .99 
Detected 
FUSED 
(IR+Video) 

[Confusion 
matrix] 

.93 .0 

.01 .99 
.83 .17 
.01 .99 

.99 .01 

.01 .99 

Figure 6. Example 3: Fusion while illumination 
changes at sunrise.

• Example 4: Figure 7 is an example of early morning, 
noon and early afternoon hours. As the sun comes up, the 
surfaces are heated up by the incoming energy from the 
sun, the increase in the surface temperatures approaches 
closer to the temperatures of some moving object sur-
faces. Depending on the moving object surface tempera-
tures and emissivities, the contrast in the IR can be radi-
cally different from frame to frame. This is obvious be-
tween frames 6954 and 8486 for example. Frame 6954 
represents an image in the morning with a person in the 
scene. Surface temperatures are still lower than that of the 
human body; moreover, human body’s emissivity is high 
(0.98) compared to the background surfaces. The human 
is clearly visible in the IR image. Although not very visi-
ble in the video image of frame 6954, the human is also in 
that image; this is clearer in the registered image. Both 
sensors provided excellent contrast in this case and the 
person was clearly detected.  
Frames 8486 and 9350 show moving objects later in the 
day when surfaces have reached higher temperatures. In 
this case, it is possible to have a moving object that may 
have closer temperature to the background surface as is 

indicated by both of these frames. On the other hand, 
video provided excellent signal and contrast. Many pixels 
were missing from the detected IR only, but the final 
fused detection recovered most of these missed pixels on 
moving objects.  
Time 
Frame # 

07:05:20 
6954

11:52:52 
8646

13:52:29 
9350

IR 

Video 

Registered 
Video 

Detected 
(IR Only) 

[Confusion 
matrix] 

.91 .09 
0 1 

.29 .71 

.01 .99 
.24 .76 
0 1 

Detected 
(Video only) 

[Confusion 
matrix] 

.91 .09 

.01 .99 
.93 .07 
.06 .99 

.52 .48 

.01 .99 

Detected 
FUSED 
(IR+Video) 

[Confusion 
matrix] 

.93 .07 

.01 .99 
.96 .04 
.02 .98 

.56 .44 

.01 .99 

Figure 7. Example 4: Mixed IR and good video signal. 

4.3  Performance Analysis 

To compare the performance of the detection algorithm 
for sensor fusion, we utilize the Receiver Operating Char-
acteristic (ROC) curves and define the probability of de-
tection as percentage of moving object correctly detected 
and probability of false alarm as percent of background 
classified as moving object. 
We selected frames representing afternoon, early morning 
and high noon for this analysis. The nighttime was not 
selected since no video signal was available at night and 
the detection algorithm relied only on the IR sensor; this 
was explained in example 2 above. The first ROC curve, 
Figure 8(a), represents an afternoon time. An example of 
this is frame 2408 in Figure 7. As is indicated by example 
1 frame 2408 and this ROC curve, the video signal oper-
ated at a higher rate than the IR signal. The fusion method 
operated at a higher level than both the video and the IR.  
The ROC curve of Figure 8(b) is an example of early 
morning hours. This figure is a contrast to that of Figure 
8(a) in the afternoon. In this case the detection rates for 
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both the IR and the fused image were high where the 
video sensor operated only nominally. This is again due to 
the fact that during early morning hours, a large gradient 
may exist between natural surface temperatures and those 
of animated objects with internal sources of energy such 
as vehicles and humans. This is due to the fact that a great 
deal of energy has been dissipated to the environment 
throughout the night. In addition, the video signal, as indi-
cated in Figure 6, example 3, is rapidly changing due to 
the illumination changes when sun is coming up.  

Figure 8. ROC curves for various periods of the day. 
(a) afternoon-evening, (b) early morning, (c) morning-
noon.   
The third ROC curve, Figure 8(c), is an example of how 
fusion can enhance the detection when both sensors may 
be operating at lower rates, yet the fused version will be 
able to detect at higher rate. This is an example of when 
cooperation between sensors can play a complementary 
role. The fused detection in this case operates at higher 
level than each single sensor alone. Partly this is due to 
the fact that different sensors may detect different parts of 
an object. So, one ought to expect sensor fusion to do 
much better in detecting more pixels on the object than 
one sensor alone. This is also observed from frames 8646 
and 9340 of example 4 in Figure 7 when for example, the 
detected IR and video frames have detected different part 
of the same object. 
These ROC curves also indicate that as the time of day 
changes, the dynamic sensor fusion introduced here can 
automatically adapt to environmental changes. This 
adaptation is also in the form of adapting to the best 
sensor at the time. The cooperation among sensors can 
also take on a complementary role when different sensors 
are able to detect different part of an object that may not 

detect different part of an object that may not be visible to 
one another. This adaptation is done in a cooperative man-
ner where sensors have already participated in the model-
building phase.    

5.  Conclusions 

In this paper a novel physics-based sensor fusion tech-
nique for moving object detection was introduced. The 
sensor fusion architecture integrated the statistical and 
phenomenology of the sensors in the visible and longwave 
IR through an evolutionary computational model. Our 
representation, matrix of mixture of Gaussians, along with 
the cooperative coevolutoionary search algorithm inte-
grated the contextual information through the physics-
based and statistical models. We showed that our fusion 
model adapted to various illumination conditions and is 
suitable for detection under variety of environmental con-
ditions. 
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