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Abstract— Managing and manipulating uncertainty in spatial
databases are important problems for various practal
applications. Unlike the traditional fuzzy approackes in relational
databases, in this paper we propose a probabilitydsed method to
model and index uncertain spatial data where everyobject is
represented by a probability density function (PDF. To index
PDFs, we construct an optimized Gaussian mixture brarchy
(OGMH) and two variants of uncertain R-tree. We provide a
comprehensive comparison among these three indicesd plain
R-tree on TIGER/Line Southern California landmark point
dataset. We find that uncertain R-tree is the bestor fixed query
and OGMH is suitable for both certain and uncertain queries.
Moreover, OGMH is suitable not only for spatial dagbases, but
also for multi-dimensional indexing applications lke content
based image retrieval, where R-tree is inefficientin high
dimensions.

Index Terms—index structures, database,
uncertainty.

R-tree, spatial
|. INTRODUCTION

Geographic information system (GIS) is a system of

computer software, hardware and data, and persaartelp
manipulate, analyze and present information thateid to a
spatial location. Spatial database is the systerohagrganizes
spatial information in GIS [1]. In GIS applicatigng is

spatial data. Arcinfo and Oracle Extensions arg enlted for
certain spatial data [1]. In this paper, we present our
approaches on indexing uncertain spatial data.

Most of the existing approaches for management of
probabilistic data are based on the relational hadd use
fuzzy set theory [4, 5]. They are useful for repramsg
uncertainty at the symbolic level. However, in didai to
symbolic uncertainty, sensor-processing tasks imvol
uncertainties at both numeric and existence le@&lpporting
these types of uncertainty in the current relatiomadel using
fuzzy logic is fundamentally difficult. So in oupproach, we
useprobability density functions (PDFs) to represent uncertain
data, which means every object is a random variable

In spatial databases, R-tree is the most often imshking
structure, which is a depth-balanced tree whoseesaate
represented byMinimum Bounding Rectangles (MBR).
Guttman [6] first proposed R-tree and Greene anckiBann
[7, 8] optimized it by reducing margin and MBR ofegx. But
R-tree family indexes fixed data only. In orderhandle the
uncertain information related to each object, weeha use R-
tree variant or design new index. In this paper,bwéd two
variants of uncertain R-tree and aptimized Gaussian
mixture hierarchy (OGMH) based orGaussian mixture model
(GMM).

The rest of the paper is organized as follows. The
uncertainty representation and index constructiore a
explained in Section Il. Section Ill gives the espental

genera”y agreed that there are several types obr erresults on TIGER/Line Southern California |andméplkint

(uncertainty) which determine the overall accuradyfinal
products. A biennial Spatial Accuracy Symposiumhid
specifically on this topic [2]. However, in the dd of
information technology scant attention has beernd pfar
handling uncertainty in spatial databases [3]. Etleough
there
uncertainty sources in spatial data, at presemeti®e not a
complete system which can store and operate onrtante
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dataset. Sectiolv concludes the paper.

Il.  TECHNICAL APPROACH

A. PDF representation

is more awareness and some understanding ofn conventional spatial databases, each obje&pisesented

by a feature vector in n dimensional feature sp&ce.when
the data are uncertain, a different representaioaquired.

In out approach, we use a PDF to represent eacrtaic
object. If an object needs n features to desctii® it is an n
dimensional (feature vector) random variable, aemin (1).

po=[r g ]

wherei =1,..., N, Nis the number of objects

1)

For simplicity, we assume that the features adependent
of each other and each feature’s PDFJ.i(j =1..,n) is

known. The process of getting the PDFs is calleckrtainty
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modeling and it is a part of our on going related work. Our The filter step differs in different index consttions. We

system needs to handle both certain and unceréim 8o we
do not give a specific name to uncertain data.Ufeatector is
the name for both certain and uncertain data ;ghper.

For feature vectors, metrics
Manhattan distance etc. are used to measure dimil&ince
our uncertain objects are random variables reptedehy
PDFs, we define the similarity of feature vectors the
probability that two random variables are the saaseshown
in (2). In this equationD and Q are two objectsD is the
object in the database alis the query.A is a threshold
vector describing the maximal error the systemtotarate to
still regard D as “similar” to Q. Paper [9] presents the
similarity measure in detail.

similarity(D,Q) = Pr(D - Q| <4)
D, Q are two feature vectors

)

B. Systemdiagram

In our method, we assume that the uncertainty algi0],
therefore the disturbed objects roughly keep thmyiral
distribution. Thus, we can use the feature vecteams to
construct the index, and attach uncertain inforomatio the
data entries. At this step, an index which handfe=ertainty is
constructed, as shown by the dash-line box in Eig.
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Fig. 1. Index structure and KNN search procedure.

When a query comes in, the nearest node(s) inntdhexiis
found. All the data entries belonging to these so@ith
uncertainty) are gathered as the candidate ses. frbicess is
called “filter”. In the “refine” step, the simildyi between the
guery and each data entry in the candidate sefdslated and
sorted. The K entries corresponding to the K larggsilarity
are the query result. This is call&chearest neighbors (KNN)
search. Here, we are only interested in KNN bezdiuis the
basis for other comprehensive queries.

construct two index systems:
(a) Optimized Gaussian mixture hierarchy (OGMH) based
on Gaussian mixture model, and

like Euclidean distanc (b) Two R-tree variants callathcertain R-tree 1 (UR1) and

UR2.

These are explained in part C and D in this section

C. Optimized Gaussian Mixture Hierarchy (OGMH)

We assume all the objects in the n dimensionalifeapace
follow some distribution. From the probability thgp any
distribution can be approximated by a weighted sfiseveral
Gaussian distributions [11], as shown in (3), whiisgribution

p(x) is approximated byC Gaussian distributions; (x)

i=1---,C. a, is the weight for each Gaussian distribution

represented by mean vectband covariance matri; :

P09 =D 1,00= D aN.5,) 3)

Figueriedo and Jain [12] proposed a varianExpectation
Maximization (EM) algorithm to automatically find the number
of clusters and to perform clustering. We use alfg@rithm to
get the Gaussian components. It involves thevidtg steps:

In the first step, the entire dataset is clustenéd several
groups. In the subsequent steps, a bottom-up bitnagy is
built based on these Gaussian components.

Since every leaf node is represented by a Gaussian
distribution, we represent every inner node by @missian
mixture of all its offspring leaves.

When a query comes in, we start from the root node,
calculate the query’s similarity with the left ahidnd the right
child, and then select the branch with higher sintiy. This
process is repeated until a leaf node is reachkdn &ll the
data entries belonging to this leaf are gathera@tiesandidate
set. If there are not enough data entries in thelidate set, all
data belonging to the sibling of this leaf node @dded.

Refinement is performed within the candidate segabthe
KNN search result.

Detail explanation of tree construction and KNN rsbha
algorithm are given in [9].

D. Uncertain R-tree

The uncertain R-tree construction is based orhellf¢ature
vector means and uncertain information is attacteeéach
data entry. To support KNN searches, two filteatsigies:
UR1 and UR2 are developed.

1) URL: Nearest leaves are returned, even if they do not
belong to the same parents. The number of leaves is
decided by the required candidate set size. Ak @atries

of these leaf nodes are gathered together as titidede

set for our uncertain query

2) UR2: The nearest leaf is found, then its ancestors are
backtracked until the one that has enough datay entr
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offspring for refinement is met. All the data eagriof these
offspring construct the candidate set.

The candidate set in both UR1 and UR?2 is refinegetathe
KNN for the query. UR2 and OGMH have the same cdatei
set extraction strategy, so only their comparisenfair,
whereas UR1 will theoretically achieve higher psem. The
comparison in the next section will testify thisu.

Ill. EXPERIMENTAL RESULTS

A. Dataset and uncertainty assignment
We take the TIGER/Line southern California landmpdint
dataset in the experiment, as shown in Fig. 2 agd & It
contains 8703 2D coordinates (longitude and laitud
degrees) and its precision (uncertainty) is 167 [fe@], which

is 0.0008. Uncertainty is added as a 2D Gaussian noise to

each point, as shown in (4):

Noise ~ N([O’O]T’Fof ;2D (4)

Fig. 3. Landmarks in Southern California.

In all the experiments, the test data are fixe@ (@higinal
data) and the training data are noisy, Wl@rea'yfor each

point are randomly selected from [0, 0.0€|06r [0, 0.005]

for different uncertainty cases. There is a paramdéfining
the minimum candidate set size, called MCS_sizel51~
nearest neighbor(s) are returned as the resuietquery.

B. Comparison of OGMH and uncertain R-tree

The KNN search is made on OGMH, UR1, UR2 and plain
R-tree. Their performance measures are precisiGncost
and CPU cost. The experiments are performed under t
different uncertainties (0.00050.005) and two MCS_sizes
(40, 60).

The program is written in C++ and the system camfigjon
is as below:

System: Sun Microsystems sun4u
os: Solaris 2.8
Memory: 2048MB

1) Precision:

. . #of correct resultsactually returned
Precision =

# of results should bereturned

Precision

0.6
0

K
Fig. 4. 6= 0.0005, MCS_size = 40.
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Fig. 5. 0= 0.0005, MCS size = 60.
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Fig. 7. 0= 0.005, MCS_size = 60. Fig.9. OGMH precision on differert.

From Fig. 4 - Fig. 7, we can make the following 2) 1/O cost -- the average page read/write for 1-NN query.
observations:

30.00
(&) UR1 always gives the best performance, follovegd 25,00
OGMH and UR2. As mentioned in Section 1.D (Uncart&- ' OURZ
tree), UR2 and OGMH have the same filter strategy. 20.00
B OGMH
) o 15.0014+ HUR1
(b) OGMH has higher precision performance than UR2,

especially when MCS_size is larger. So Gaussiantuvtix  10.004
model is more appropriate than MBRs in PDF indexing 5.00-

(c) Plain R-tree gives the worst precision andsitnot ~ 0-003== " === === "= 4= =" = —
acceptable, so in the following comparisons, pRitree is NCS s =40 MOS, Size =60 MCS, 5ze =40 MCS, 5z0= 60
removed.

Fig. 10. 1/O cost comparison among all indices.

From Fig. 8 and Figd we can see that when the uncertainty o

increases from 0.0085to 0.008 (MCS_size = 60), the S shown in Fig. 10, OGMH and UR2 need more I/t cos
than UR1. The OGMH tree has more levels than R{tt@evs.

4). The more 1/0O cost of UR2 comes from the baekking,
But it is still comparable with OGMH.

precision performance of UR1 degrades much mone tinat
of OGMH (5% vs. 0.15%). So OGMH is more stable tha
uncertain R-tree.
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precision performance.

Fifth International Conference on Data Engineering.
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Beckmann, N., et al. The R*-tree: an efficiamtd robust
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S GMOD International Conference on Management of
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But as mentioned in Section |, a complete systemulshbe 8]
able to handle both fixed and uncertain queriesusThhe
choice of index structure depends on the applinatld no

uncertain query is asked, UR1 is the best choitlegraise Data. 1990. Atlantic City, NJ.
only OGMH is suitable. [9] Bhanu, B., R. Li, C. Ravishankar, M. Kurth, add Ni.
Indexing Structure for Handling Uncertain Spatial
IV. CONCLUSIONS Database. in6" International Symposium on Spatial
Uncertainty in spatial databases is getting more more Accuracy Assessment in Natural Resources and
attention, but most of the existing approaches tased on Environmental Sciences. 2004. Portland, Maine, USA.

relational models using fuzzy set theory. This radtis only [10] Brown, R.H. and E. Ehrlich, TIGER/Line(TM) ES,

suitable for handling uncertainty in symbolic leviel order to %993/' 1993: / W;a\shin/g_ton,/ D'h I C.
support uncertainties at numeric and existence ldewse ((;tsplém.census.qov geo/wwwitiger/content.ntm

proposed a new uncertainty model and new indexihgrses. [11] Duda, R.O., Hart, P.E. and D.G. Stork, Patter
In thi d in obiects RDF Classification. New York: A Wiley-Interscience
n this paper, we represented uncertain objectl s Publication, 2000.

and constructed amptimized Gaussian mixture hierarchy [12] Figueriedo, M.A. and A. Jain, Unsupervised imiiag of
based on Gaussian mixture model and an uncertaigeR- Finite Mixture Models IEEE Transactions on Pattern

After a comprehensive comparison based on KNN kearc Analysis and Machine Intelligence, 2002. 24(3): p. 381-
precision, 1/0O cost and CPU cost, uncertain R-{téR1) is 396.

the best for fixed queries. But OGMH is suitable fth

certain and uncertain queries. Moreover, the OGMH®t

suitable for only spatial databases, but also e multi-

dimensional index applications likeontent based image and

video retrieval.



