
  
Abstract— Managing and manipulating uncertainty in spatial 

databases are important problems for various practical 
applications. Unlike the traditional fuzzy approaches in relational 
databases, in this paper we propose a probability-based method to 
model and index uncertain spatial data where every object is 
represented by a probability density function (PDF). To index 
PDFs, we construct an optimized Gaussian mixture hierarchy 
(OGMH) and two variants of uncertain R-tree. We provide a 
comprehensive comparison among these three indices and plain 
R-tree on TIGER/Line Southern California landmark point 
dataset. We find that uncertain R-tree is the best for fixed query 
and OGMH is suitable for both certain and uncertain queries. 
Moreover, OGMH is suitable not only for spatial databases, but 
also for multi-dimensional indexing applications like content 
based image retrieval, where R-tree is inefficient in high 
dimensions. 
 

Index Terms—index structures, R-tree, spatial database, 
uncertainty. 

I. INTRODUCTION 

Geographic information system (GIS) is a system of 

computer software, hardware and data, and personnel to help 
manipulate, analyze and present information that is tied to a 
spatial location. Spatial database is the system which organizes 
spatial information in GIS [1]. In GIS applications, it is 
generally agreed that there are several types of error 
(uncertainty) which determine the overall accuracy of final 
products. A biennial Spatial Accuracy Symposium is held 
specifically on this topic [2]. However, in the filed of 
information technology scant attention has been paid for 
handling uncertainty in spatial databases [3]. Even though 
there is more awareness and some understanding of 
uncertainty sources in spatial data, at present there is not a 
complete system which can store and operate on uncertain 
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spatial data. ArcInfo and Oracle Extensions are only suited for 
certain spatial data [1]. In this paper, we present our 
approaches on indexing uncertain spatial data. 

Most of the existing approaches for management of 
probabilistic data are based on the relational model and use 
fuzzy set theory [4, 5]. They are useful for representing 
uncertainty at the symbolic level. However, in addition to 
symbolic uncertainty, sensor-processing tasks involve 
uncertainties at both numeric and existence levels. Supporting 
these types of uncertainty in the current relational model using 
fuzzy logic is fundamentally difficult. So in our approach, we 
use probability density functions (PDFs) to represent uncertain 
data, which means every object is a random variable. 

In spatial databases, R-tree is the most often used indexing 
structure, which is a depth-balanced tree whose nodes are 
represented by Minimum Bounding Rectangles (MBR). 
Guttman [6] first proposed R-tree and Greene and Beckmann 
[7, 8] optimized it by reducing margin and MBR overlap. But 
R-tree family indexes fixed data only. In order to handle the 
uncertain information related to each object, we have to use R-
tree variant or design new index. In this paper, we build two 
variants of uncertain R-tree and an optimized Gaussian 
mixture hierarchy (OGMH) based on Gaussian mixture model 
(GMM).  

The rest of the paper is organized as follows. The 
uncertainty representation and index construction are 
explained in Section II. Section III gives the experimental 
results on TIGER/Line Southern California landmark point 
dataset. Section IV  concludes the paper.  

II. TECHNICAL APPROACH 

A. PDF representation 

In conventional spatial databases, each object is represented 
by a feature vector in n dimensional feature space. But when 
the data are uncertain, a different representation is required.  

In out approach, we use a PDF to represent each uncertain 
object. If an object needs n features to describe, then it is an n 
dimensional (feature vector) random variable, as given in (1). 

[ ]Ti
n

iii fff ,,, 21 �=f      

 where Ni ,,1�= , N is the number of objects 
(1) 

 For simplicity, we assume that the features are independent 

of each other and each feature’s PDF ( njf i
j ,...,1, = ) is 

known. The process of getting the PDFs is called uncertainty 
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modeling and it is a part of our on going related work. Our 
system needs to handle both certain and uncertain data. So we 
do not give a specific name to uncertain data. Feature vector is 
the name for both certain and uncertain data in this paper. 

For feature vectors, metrics like Euclidean distance, 
Manhattan distance etc. are used to measure similarity. Since 
our uncertain objects are random variables represented by 
PDFs, we define the similarity of feature vectors as the 
probability that two random variables are the same, as shown 
in (2). In this equation, D and Q are two objects. D is the 

object in the database and Q is the query. ∆  is a threshold 
vector describing the maximal error the system can tolerate to 
still regard D as “similar” to Q. Paper [9] presents the 
similarity measure in detail. 

( )∆<−= QDQD Prsimilarity ),(        

D, Q are two feature vectors 
(2) 

B. System diagram 

In our method, we assume that the uncertainty is small [10], 
therefore the disturbed objects roughly keep the original 
distribution. Thus, we can use the feature vector means to 
construct the index, and attach uncertain information to the 
data entries. At this step, an index which handles uncertainty is 
constructed, as shown by the dash-line box in Fig. 1.  

 

Feature 
vector means 
are extracted 

Indexing 
construction 

Get nearest 
node(s) 

Refine the query result 
within candidate set 

based on the similarity 
measure 

Feature 
vectors 

Uncertainty is 
attached to 

each data entry 

Index which 
handles 

uncertainty 
Query 

KNN search results 

Gather all data 
entries as  the 
candidate set 

 
Fig. 1.   Index structure and KNN search procedure. 

 

When a query comes in, the nearest node(s) in the index is 
found. All the data entries belonging to these nodes (with 
uncertainty) are gathered as the candidate set. This process is 
called “filter”. In the “refine” step, the similarity between the 
query and each data entry in the candidate set is calculated and 
sorted. The K entries corresponding to the K largest similarity 
are the query result. This is called K nearest neighbors (KNN) 
search.  Here, we are only interested in KNN because it is the 
basis for other comprehensive queries. 

The filter step differs in different index constructions. We 
construct two index systems:  

(a) Optimized Gaussian mixture hierarchy (OGMH) based 
on Gaussian mixture model, and  

(b) Two R-tree variants called uncertain R-tree 1 (UR1) and 
UR2.  

 
These are explained in part C and D in this section.  

C. Optimized Gaussian Mixture Hierarchy (OGMH) 

We assume all the objects in the n dimensional feature space 
follow some distribution. From the probability theory, any 
distribution can be approximated by a weighted sum of several 
Gaussian distributions [11], as shown in (3), where distribution 

)(xp  is approximated by C Gaussian distributions:( )xfi , 

Ci ,,1�= . iα  is the weight for each Gaussian distribution 

represented by mean vectoriu and covariance matrixiΣ :  

�� Σ==
C

i
iii

C

i
ii uNxfxp ),()()( αα  (3) 

 
Figueriedo and Jain [12] proposed a variant of Expectation 

Maximization (EM) algorithm to automatically find the number 
of clusters and to perform clustering. We use this algorithm to 
get the Gaussian components.  It involves the following steps: 

In the first step, the entire dataset is clustered into several 
groups. In the subsequent steps, a bottom-up binary tree is 
built based on these Gaussian components.  

Since every leaf node is represented by a Gaussian 
distribution, we represent every inner node by the Gaussian 
mixture of all its offspring leaves.  

When a query comes in, we start from the root node, 
calculate the query’s similarity with the left child and the right 
child, and then select the branch with higher similarity. This 
process is repeated until a leaf node is reached. Then all the 
data entries belonging to this leaf are gathered as the candidate 
set. If there are not enough data entries in the candidate set, all 
data belonging to the sibling of this leaf node are added.  

Refinement is performed within the candidate set to get the 
KNN search result. 

Detail explanation of tree construction and KNN search 
algorithm are given in [9]. 

D. Uncertain R-tree 

The uncertain R-tree construction is based on all the feature 
vector means and uncertain information is attached to each 
data entry. To support KNN searches, two filter strategies: 
UR1 and UR2 are developed. 

 

1) UR1: Nearest leaves are returned, even if they do not 
belong to the same parents. The number of leaves is 
decided by the required candidate set size. All data entries 
of these leaf nodes are gathered together as the candidate 
set for our uncertain query.  

 

2) UR2: The nearest leaf is found, then its ancestors are 
backtracked until the one that has enough data entry 
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offspring for refinement is met. All the data entries of these 
offspring construct the candidate set. 

 
The candidate set in both UR1 and UR2 is refined to get the 

KNN for the query. UR2 and OGMH have the same candidate 
set extraction strategy, so only their comparison is fair, 
whereas UR1 will theoretically achieve higher precision. The 
comparison in the next section will testify this result. 

III. EXPERIMENTAL RESULTS 

A. Dataset and uncertainty assignment 

We take the TIGER/Line southern California landmark point 
dataset in the experiment, as shown in Fig. 2 and Fig. 3. It 
contains 8703 2D coordinates (longitude and latitude in 
degrees) and its precision (uncertainty) is 167 feet [10], which 
is 0.0005°. Uncertainty is added as a 2D Gaussian noise to 
each point, as shown in (4):  
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Fig. 2.  Counties in Southern California. 

 

 
 

Fig. 3.  Landmarks in Southern California. 

 

In all the experiments, the test data are fixed (the original 
data) and the training data are noisy, where

xδ , yδ for each 

point are randomly selected from [0, 0.0005°] or [0, 0.005°] 

for different uncertainty cases. There is a parameter defining 
the minimum candidate set size, called MCS_size. 1~15 
nearest neighbor(s) are returned as the result to the query. 

 

B. Comparison of OGMH and uncertain R-tree 

The KNN search is made on OGMH, UR1, UR2 and plain 
R-tree.  Their performance measures are precision, I/O cost 
and CPU cost. The experiments are performed under two 
different uncertainties (0.0005°, 0.005°) and two MCS_sizes 
(40, 60).  

The program is written in C++ and the system configuration 
is as below: 

 
System: Sun Microsystems  sun4u 
OS:   Solaris 2.8 
Memory: 2048MB 
 

1) Precision:  

returned be  shouldresults of #

returnedactually  results correct of #
Precision =  
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Fig. 4.  σ= 0.0005, MCS_size = 40. 
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Fig. 5.  σ= 0.0005, MCS size = 60. 
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Fig. 6.  σ= 0.005, MCS_size = 40. 
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Fig. 7.  σ= 0.005, MCS_size = 60. 

 

 
From Fig. 4 - Fig. 7, we can make the following 

observations: 
 
(a) UR1 always gives the best performance, followed by 

OGMH and UR2. As mentioned in Section II.D (Uncertain R-
tree), UR2 and OGMH have the same filter strategy. 

 
(b) OGMH has higher precision performance than UR2, 

especially when MCS_size is larger. So Gaussian Mixture 
model is more appropriate than MBRs in PDF indexing.  

 
(c) Plain R-tree gives the worst precision and it is not 

acceptable, so in the following comparisons, plain R-tree is 
removed. 

 
From Fig. 8 and Fig. 9 we can see that when the uncertainty 

increases from 0.0005° to 0.005° (MCS_size = 60), the 
precision performance of UR1 degrades much more than that 
of OGMH (5% vs. 0.15%). So OGMH is more stable than 
uncertain R-tree. 
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Fig. 8.  UR1 precision on different σ. 

 
 

0 5 10 15
0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

K

P
re

ci
si

on

σ = 0.005
σ = 0.0005

 
Fig. 9.  OGMH precision on different σ. 

 

 
2) I/O cost -- the average page read/write for 1-NN query. 
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Fig. 10.  I/O cost comparison among all indices. 
 

As shown in Fig. 10, OGMH and UR2 need more I/O cost 
than UR1. The OGMH tree has more levels than R-tree (17 vs. 
4). The more I/O cost of UR2 comes from the back tracking, 
but it is still comparable with OGMH. 
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3) CPU cost -- average time (second) for 1-NN query. 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

sigma = 0.005,
MCS_size= 40

sigma = 0.005,
MCS_size = 60

sigma = 0.0005,
MCS_size = 40

sigma = 0.0005,
MCS_size = 60

UR2

OGMH

UR1

 
Fig. 11.  CPU cost comparison among all indices. 

 
Fig. 11 indicates that UR1 and OGMH are comparable on 

time complexity and they are more efficient than UR2, this is 
because the back tracking of UR2 is time consuming. 

 
From the three comparisons above, we see that when the 

query is fixed, UR1 is the best in general, followed by OGMH 
and UR2. Plain R-tree is not acceptable with respect to 
precision performance.  

 
But as mentioned in Section I, a complete system should be 

able to handle both fixed and uncertain queries. Thus, the 
choice of index structure depends on the application. If no 
uncertain query is asked, UR1 is the best choice, otherwise 
only OGMH is suitable. 

IV. CONCLUSIONS 

Uncertainty in spatial databases is getting more and more 
attention, but most of the existing approaches are based on 
relational models using fuzzy set theory. This method is only 
suitable for handling uncertainty in symbolic level. In order to 
support uncertainties at numeric and existence levels, we 
proposed a new uncertainty model and new indexing schemes.  

 
In this paper, we represented uncertain objects with PDFs 

and constructed an optimized Gaussian mixture hierarchy 
based on Gaussian mixture model and an uncertain R-tree. 
After a comprehensive comparison based on KNN search 
precision, I/O cost and CPU cost, uncertain R-tree (UR1) is 
the best for fixed queries. But OGMH is suitable for both 
certain and uncertain queries. Moreover, the OGMH is not 
suitable for only spatial databases, but also for other multi-
dimensional index applications like content based image and 
video retrieval. 
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