

Abstract— Managing and manipulating uncertainty in spatial

databases are important problems for various practical
applications. Unlike the traditional fuzzy approaches in relational
databases, in this paper we propose a probability-based method to
model and index uncertain spatial data where every object is
represented by a probability density function (PDF). To index
PDFs, we construct an optimized Gaussian mixture hierarchy
(OGMH) and two variants of uncertain R-tree. We provide a
comprehensive comparison among these three indices and plain
R-tree on TIGER/Line Southern California landmark point
dataset. We find that uncertain R-tree is the best for fixed query
and OGMH is suitable for both certain and uncertain queries.
Moreover, OGMH is suitable not only for spatial databases, but
also for multi-dimensional indexing applications like content
based image retrieval, where R-tree is inefficient in high
dimensions.

Index Terms—index structures, R-tree, spatial database,
uncertainty.

I. INTRODUCTION

Geographic information system (GIS) is a system of

computer software, hardware and data, and personnel to help
manipulate, analyze and present information that is tied to a
spatial location. Spatial database is the system which organizes
spatial information in GIS [1]. In GIS applications, it is
generally agreed that there are several types of error
(uncertainty) which determine the overall accuracy of final
products. A biennial Spatial Accuracy Symposium is held
specifically on this topic [2]. However, in the filed of
information technology scant attention has been paid for
handling uncertainty in spatial databases [3]. Even though
there is more awareness and some understanding of
uncertainty sources in spatial data, at present there is not a
complete system which can store and operate on uncertain

This work was supported by NSF Information Technology Research Grant

0114036. The contents of the information do not reflect the position or policy
of the U.S. Government.

B. Bhanu is with the Center for Research in Intelligent System, University
of California, Riverside, CA 2521 (e-mail: bhanu@cris.ucr.edu).

R. Li is with the Department of Electrical Engineering, University of
California, Riverside, CA 92521 (e-mail: rli@vislab.ucr.edu).

C. Ravishankar is with the Department of Computer Science &
Engineering, University of California, Riverside, CA 92521 (e-mail:
ravi@cs.ucr.edu).

J. Ni is with the Department of Computer Science & Engineering,
University of California, Riverside, CA 92521 (e-mail: jni@cs.ucr.edu).

spatial data. ArcInfo and Oracle Extensions are only suited for
certain spatial data [1]. In this paper, we present our
approaches on indexing uncertain spatial data.

Most of the existing approaches for management of
probabilistic data are based on the relational model and use
fuzzy set theory [4, 5]. They are useful for representing
uncertainty at the symbolic level. However, in addition to
symbolic uncertainty, sensor-processing tasks involve
uncertainties at both numeric and existence levels. Supporting
these types of uncertainty in the current relational model using
fuzzy logic is fundamentally difficult. So in our approach, we
use probability density functions (PDFs) to represent uncertain
data, which means every object is a random variable.

In spatial databases, R-tree is the most often used indexing
structure, which is a depth-balanced tree whose nodes are
represented by Minimum Bounding Rectangles (MBR).
Guttman [6] first proposed R-tree and Greene and Beckmann
[7, 8] optimized it by reducing margin and MBR overlap. But
R-tree family indexes fixed data only. In order to handle the
uncertain information related to each object, we have to use R-
tree variant or design new index. In this paper, we build two
variants of uncertain R-tree and an optimized Gaussian
mixture hierarchy (OGMH) based on Gaussian mixture model
(GMM).

The rest of the paper is organized as follows. The
uncertainty representation and index construction are
explained in Section II. Section III gives the experimental
results on TIGER/Line Southern California landmark point
dataset. Section IV concludes the paper.

II. TECHNICAL APPROACH

A. PDF representation

In conventional spatial databases, each object is represented
by a feature vector in n dimensional feature space. But when
the data are uncertain, a different representation is required.

In out approach, we use a PDF to represent each uncertain
object. If an object needs n features to describe, then it is an n
dimensional (feature vector) random variable, as given in (1).

[]Ti
n

iii fff ,,, 21 �=f

 where Ni ,,1�= , N is the number of objects
(1)

 For simplicity, we assume that the features are independent

of each other and each feature’s PDF (njf i
j ,...,1, =) is

known. The process of getting the PDFs is called uncertainty

Handling Uncertain Spatial Data: Comparisons
between Indexing Structures

Bir Bhanu, Rui Li, Chinya Ravishankar and Jinfeng Ni

PRRS04_020

 2

modeling and it is a part of our on going related work. Our
system needs to handle both certain and uncertain data. So we
do not give a specific name to uncertain data. Feature vector is
the name for both certain and uncertain data in this paper.

For feature vectors, metrics like Euclidean distance,
Manhattan distance etc. are used to measure similarity. Since
our uncertain objects are random variables represented by
PDFs, we define the similarity of feature vectors as the
probability that two random variables are the same, as shown
in (2). In this equation, D and Q are two objects. D is the

object in the database and Q is the query. ∆ is a threshold
vector describing the maximal error the system can tolerate to
still regard D as “similar” to Q. Paper [9] presents the
similarity measure in detail.

()∆<−= QDQD Prsimilarity),(

D, Q are two feature vectors
(2)

B. System diagram

In our method, we assume that the uncertainty is small [10],
therefore the disturbed objects roughly keep the original
distribution. Thus, we can use the feature vector means to
construct the index, and attach uncertain information to the
data entries. At this step, an index which handles uncertainty is
constructed, as shown by the dash-line box in Fig. 1.

Feature
vector means
are extracted

Indexing
construction

Get nearest
node(s)

Refine the query result
within candidate set

based on the similarity
measure

Feature
vectors

Uncertainty is
attached to

each data entry

Index which
handles

uncertainty
Query

KNN search results

Gather all data
entries as the
candidate set

Fig. 1. Index structure and KNN search procedure.

When a query comes in, the nearest node(s) in the index is
found. All the data entries belonging to these nodes (with
uncertainty) are gathered as the candidate set. This process is
called “filter”. In the “refine” step, the similarity between the
query and each data entry in the candidate set is calculated and
sorted. The K entries corresponding to the K largest similarity
are the query result. This is called K nearest neighbors (KNN)
search. Here, we are only interested in KNN because it is the
basis for other comprehensive queries.

The filter step differs in different index constructions. We
construct two index systems:

(a) Optimized Gaussian mixture hierarchy (OGMH) based
on Gaussian mixture model, and

(b) Two R-tree variants called uncertain R-tree 1 (UR1) and
UR2.

These are explained in part C and D in this section.

C. Optimized Gaussian Mixture Hierarchy (OGMH)

We assume all the objects in the n dimensional feature space
follow some distribution. From the probability theory, any
distribution can be approximated by a weighted sum of several
Gaussian distributions [11], as shown in (3), where distribution

)(xp is approximated by C Gaussian distributions:()xfi ,

Ci ,,1�= . iα is the weight for each Gaussian distribution

represented by mean vectoriu and covariance matrixiΣ :

�� Σ==
C

i
iii

C

i
ii uNxfxp),()()(αα (3)

Figueriedo and Jain [12] proposed a variant of Expectation

Maximization (EM) algorithm to automatically find the number
of clusters and to perform clustering. We use this algorithm to
get the Gaussian components. It involves the following steps:

In the first step, the entire dataset is clustered into several
groups. In the subsequent steps, a bottom-up binary tree is
built based on these Gaussian components.

Since every leaf node is represented by a Gaussian
distribution, we represent every inner node by the Gaussian
mixture of all its offspring leaves.

When a query comes in, we start from the root node,
calculate the query’s similarity with the left child and the right
child, and then select the branch with higher similarity. This
process is repeated until a leaf node is reached. Then all the
data entries belonging to this leaf are gathered as the candidate
set. If there are not enough data entries in the candidate set, all
data belonging to the sibling of this leaf node are added.

Refinement is performed within the candidate set to get the
KNN search result.

Detail explanation of tree construction and KNN search
algorithm are given in [9].

D. Uncertain R-tree

The uncertain R-tree construction is based on all the feature
vector means and uncertain information is attached to each
data entry. To support KNN searches, two filter strategies:
UR1 and UR2 are developed.

1) UR1: Nearest leaves are returned, even if they do not
belong to the same parents. The number of leaves is
decided by the required candidate set size. All data entries
of these leaf nodes are gathered together as the candidate
set for our uncertain query.

2) UR2: The nearest leaf is found, then its ancestors are
backtracked until the one that has enough data entry

PRRS04_020

 3

offspring for refinement is met. All the data entries of these
offspring construct the candidate set.

The candidate set in both UR1 and UR2 is refined to get the

KNN for the query. UR2 and OGMH have the same candidate
set extraction strategy, so only their comparison is fair,
whereas UR1 will theoretically achieve higher precision. The
comparison in the next section will testify this result.

III. EXPERIMENTAL RESULTS

A. Dataset and uncertainty assignment

We take the TIGER/Line southern California landmark point
dataset in the experiment, as shown in Fig. 2 and Fig. 3. It
contains 8703 2D coordinates (longitude and latitude in
degrees) and its precision (uncertainty) is 167 feet [10], which
is 0.0005°. Uncertainty is added as a 2D Gaussian noise to
each point, as shown in (4):

[]
�
�

�

�

�
�

�

�

�
�
	

�
�
�

2

2

0

0
,0,0~

y

xTNNoise
δ

δ (4)

Fig. 2. Counties in Southern California.

Fig. 3. Landmarks in Southern California.

In all the experiments, the test data are fixed (the original
data) and the training data are noisy, where

xδ , yδ for each

point are randomly selected from [0, 0.0005°] or [0, 0.005°]

for different uncertainty cases. There is a parameter defining
the minimum candidate set size, called MCS_size. 1~15
nearest neighbor(s) are returned as the result to the query.

B. Comparison of OGMH and uncertain R-tree

The KNN search is made on OGMH, UR1, UR2 and plain
R-tree. Their performance measures are precision, I/O cost
and CPU cost. The experiments are performed under two
different uncertainties (0.0005°, 0.005°) and two MCS_sizes
(40, 60).

The program is written in C++ and the system configuration
is as below:

System: Sun Microsystems sun4u
OS: Solaris 2.8
Memory: 2048MB

1) Precision:

returned be shouldresults of #

returnedactually results correct of #
Precision =

0 5 10 15
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

K

P
re

ci
si

on

RTree
UR2
OGMH
UR1

Fig. 4. σ= 0.0005, MCS_size = 40.

0 5 10 15
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

K

P
re

ci
si

on

RTree
UR2
OGMH
UR1

Fig. 5. σ= 0.0005, MCS size = 60.

PRRS04_020

 4

0 5 10 15
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

K

P
re

ci
si

on
RTree
UR2
OGMH
UR1

Fig. 6. σ= 0.005, MCS_size = 40.

0 5 10 15
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

K

P
re

ci
si

on

RTree
UR2
OGMH
UR1

Fig. 7. σ= 0.005, MCS_size = 60.

From Fig. 4 - Fig. 7, we can make the following

observations:

(a) UR1 always gives the best performance, followed by

OGMH and UR2. As mentioned in Section II.D (Uncertain R-
tree), UR2 and OGMH have the same filter strategy.

(b) OGMH has higher precision performance than UR2,

especially when MCS_size is larger. So Gaussian Mixture
model is more appropriate than MBRs in PDF indexing.

(c) Plain R-tree gives the worst precision and it is not

acceptable, so in the following comparisons, plain R-tree is
removed.

From Fig. 8 and Fig. 9 we can see that when the uncertainty

increases from 0.0005° to 0.005° (MCS_size = 60), the
precision performance of UR1 degrades much more than that
of OGMH (5% vs. 0.15%). So OGMH is more stable than
uncertain R-tree.

0 5 10 15
0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

K

P
re

ci
si

on

σ = 0.005
σ = 0.0005

Fig. 8. UR1 precision on different σ.

0 5 10 15
0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

K

P
re

ci
si

on

σ = 0.005
σ = 0.0005

Fig. 9. OGMH precision on different σ.

2) I/O cost -- the average page read/write for 1-NN query.

0.00

5.00

10.00

15.00

20.00

25.00

30.00

sigma = 0.005,
MCS_size = 40

sigma = 0.005,
MCS_size = 60

sigma = 0.0005,
MCS_size = 40

sigma = 0.0005,
MCS_size = 60

UR2

OGMH

UR1

Fig. 10. I/O cost comparison among all indices.

As shown in Fig. 10, OGMH and UR2 need more I/O cost
than UR1. The OGMH tree has more levels than R-tree (17 vs.
4). The more I/O cost of UR2 comes from the back tracking,
but it is still comparable with OGMH.

PRRS04_020

 5

3) CPU cost -- average time (second) for 1-NN query.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

sigma = 0.005,
MCS_size= 40

sigma = 0.005,
MCS_size = 60

sigma = 0.0005,
MCS_size = 40

sigma = 0.0005,
MCS_size = 60

UR2

OGMH

UR1

Fig. 11. CPU cost comparison among all indices.

Fig. 11 indicates that UR1 and OGMH are comparable on

time complexity and they are more efficient than UR2, this is
because the back tracking of UR2 is time consuming.

From the three comparisons above, we see that when the

query is fixed, UR1 is the best in general, followed by OGMH
and UR2. Plain R-tree is not acceptable with respect to
precision performance.

But as mentioned in Section I, a complete system should be

able to handle both fixed and uncertain queries. Thus, the
choice of index structure depends on the application. If no
uncertain query is asked, UR1 is the best choice, otherwise
only OGMH is suitable.

IV. CONCLUSIONS

Uncertainty in spatial databases is getting more and more
attention, but most of the existing approaches are based on
relational models using fuzzy set theory. This method is only
suitable for handling uncertainty in symbolic level. In order to
support uncertainties at numeric and existence levels, we
proposed a new uncertainty model and new indexing schemes.

In this paper, we represented uncertain objects with PDFs

and constructed an optimized Gaussian mixture hierarchy
based on Gaussian mixture model and an uncertain R-tree.
After a comprehensive comparison based on KNN search
precision, I/O cost and CPU cost, uncertain R-tree (UR1) is
the best for fixed queries. But OGMH is suitable for both
certain and uncertain queries. Moreover, the OGMH is not
suitable for only spatial databases, but also for other multi-
dimensional index applications like content based image and
video retrieval.

REFERENCES

[1] Rigaus, P., M. Scholl, and A. Voisard, Spatial Databases:
with Application to GIS. San Francisco, California:
Morgan Kaufmann, 2001.

[2] International Symposium on Spatial Accuracy
Assessment in Natural Resources and Environmental
Sciences.
http://www.nrcse.washington.edu/ties/events/ties2004/def
ault.html

[3] Zaniolo, C., et al., Introduction to Advanced Database
Systems: Morgan-Kaufmann, 1997.

 [4] Schneider, M. Uncertainty Management for Spatial Data
in Databases: Fuzzy Spatial Data Types. in 6th Int.
Symposium on Advances in Spatial Databases (SSD).
1999: Springer Verlag.

[5] Robinson, V.B., A Perspective on Managing Uncertainty
in Geographic Information System with Fuzzy Sets. IEEE
Transactions in Geographic Information System, 2003.
7(1): p. 211-215.

[6] Guttman, A. R-trees: A Dynamic Index Structure for
Spatial Searching. in SIGMOD. 1984. Boston, MA,.

[7] Greene, D. An Implementation and Performance Analysis
of Spatial Data Access Methods. in Proceedings of the
Fifth International Conference on Data Engineering.
1989: IEEE Computer Society Washington, DC, USA.

[8] Beckmann, N., et al. The R*-tree: an efficient and robust
access method for points and rectangles. in ACM
SIGMOD International Conference on Management of
Data. 1990. Atlantic City, NJ.

[9] Bhanu, B., R. Li, C. Ravishankar, M. Kurth, and J. Ni.
Indexing Structure for Handling Uncertain Spatial
Database. in 6th International Symposium on Spatial
Accuracy Assessment in Natural Resources and
Environmental Sciences. 2004. Portland, Maine, USA.

[10] Brown, R.H. and E. Ehrlich, TIGER/Line(TM) Files,
1992. 1993: Washington, D. C.
http://www.census.gov/geo/www/tiger/content.html
(03/30/04)

[11] Duda, R.O., Hart, P.E., and D.G. Stork, Pattern
Classification. New York: A Wiley-Interscience
Publication, 2000.

[12] Figueriedo, M.A. and A. Jain, Unsupervised Learning of
Finite Mixture Models. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2002. 24(3): p. 381-
396.

