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Abstract 

Fusion of different sensor types (e.g. video, thermal in-

frared) and sensor selection strategy at signal or pixel 

level is a non-trivial task that requires a well-defined 

structure. In this paper, we provide a novel fusion archi-

tecture that is flexible and can be adapted to different 

types of sensors. The new fusion architecture provides an 

elegant approach to integrating different sensing phe-

nomenology, sensor readings, and contextual informa-

tion. A cooperative coevolutionary method is introduced 

for optimally selecting fusion strategies. We provide re-

sults in the context of a moving object detection system 

for a full 24 hours diurnal cycle in an outdoor environ-

ment. The results indicate that our architecture is robust 

to adverse illumination conditions and the evolutionary 

paradigm can provide an adaptable and flexible method 

for combining signals of different modality. 

1. Introduction 

Multisensor fusion attempts to improve object detec-

tion/recognition by incorporating benefits of different 

sensing modalities. The advantages of multisensor fusion 

are improved detection, increased accuracy, reduced am-

biguity, robust operation, and extended coverage. Sensor 

fusion can be performed at different levels including sig-

nal or pixel level, feature level and decision level. 

It is generally desirable to fuse sensors at the signal or 

pixel level where the information loss is minimal; how-

ever, sensor fusion at this level may be difficult for sen-

sors of different type. A unified representation must be 

obtained whereas all sensors can be put into this represen-

tation. Furthermore, operations on the data representation 

must be defined. These operations must encapsulate the 

process for which the sensor fusion is taking place. Once a 

representation and its operators are defined a set of rules 

are generally developed to adapt the fusion strategies to 

changes in the signal caused by the environment in which 

the system is operating. An example is detecting moving 

objects under a variety of environmental conditions in 

outdoors. Suitable representation and automatic adapta-

tion methods are applied to detect and track changes [8] in 

the scene for robust detection; however these methods do 

not take into account any contextual information and rapid 

environmental dynamics which can greatly affect the sen-

sor selection and detection strategy.  For more robust de-

tection under adverse illumination condition for example 

no light at night, other sensing modalities that can operate 

under those conditions must be introduced. 

Sensor fusion approaches generally fall into one of the 

following categories, Statistical-based, AI-based, Algo-

rithmic-based and Physics-based. The AI and algorithmic-

based paradigms are less suited for dynamic conditions 

whereas the statistics and physics-based paradigms are the 

method of choice for integrating sensor information that 

can change over time.  We provide a new sensor fusion 

technique that combines the statistical and physics-based 

fusion paradigms through an evolutionary process. We 

overcome the disadvantage of each of these paradigms by 

including suitable sensor models that have enormous gen-

eralizing power. This generalizing power is then used to 

complement the limited available sensor data that is re-

quired by the statistical methods.  Our sensor fusion and 

strategy selection algorithm is performed at the pixel level 

where the information loss is minimal. 

The salient features of our approach described in this pa-

per are given below: a) consistent data representation: all 

sensing modalities are represented by a matrix of mixture 

of Gaussians in a consistent manner. b) Evolutionary-

based strategy selection: A cooperative coevolutionary 

algorithm is developed to systematically fuse and integrate 

information from both statistical and physical models into 

a unified structure for sensor selection and detection. c)

physical models: Sound physical models are utilized for 

each sensing modality (e.g., visible and IR) to provide 

prediction for each signal and include the contextual in-

formation into the evolutionary process. d) Contextual-

based adaptation: Environmental conditions such as am-

bient/air temperatures, wind and fluid velocities, surface 

emissivities, etc., directly influence the fusion strategies. 

e) Experimental results: Results are obtained for a full 24 

hours diurnal cycle for a moving object detection system 

fusing long-wave infrared (IR) and video. 

2. Previous Work 

There have been several approaches to moving object 

detection, including feature-based methods [1], and fea-

tureless methods such as statistical background subtrac-

tion [2, 3, 8]. Inherent problems of feature-based methods 

are due to noise, articulation or occlusion of background 
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and foreground objects, which make the correspondence 

problem intractable. In the featureless methods the back-

ground is modeled based on statistical properties of ob-

served signal at pixel level. Outdoor scenes provide more 

challenging scenarios such as sudden changes due to 

cloud or swaying motion of the background such as 

leaves. In [8] the idea (of representing a pixel based on a 

Gaussian distribution) is extended to a mixture of Gaus-

sians density functions that can represent any arbitrary 

distribution functions. Assuming independence, this idea 

is exploited among sensors and fusing the results through 

multistrategy models such as cooperative, competitive and 

Dempster-Shafer [4].  

To maintain and track the dynamics of a scene, each of 

these approaches provide a statistical-based adaptive pro-

cedure solely based on current or past observations. In 

some cases, for example in [9], the adaptive procedure is 

augmented with an object or region-based procedure to 

update the background models. The mixture model can 

adapt to slow illumination changes over time. Some of the 

shortcomings of the current approaches are: 1) All the 

previous approaches use a fixed recursive filter to adapt to 

scene changes which requires fixed parameters, learning 

rates and thresholds, 2) None of these approaches address 

the problem of low light or no light conditions, 3) No con-

textual information is used to update the Guassian pa-

rameters, 4) Generally, a large number of observations are 

required before a background model can be constructed 

and maintained effectively, and 5) All the previous algo-

rithms have been applied to a single sensing modality 

(usually visible or near infrared) and no results have been 

shown for extreme conditions, for example, no illumina-

tion, sunset, or sunrise condition. 

Our algorithm explained below overcomes these short-

comings by providing a novel sensor fusion algorithm that 

fuses longwave (thermal) and visible sensors in a unified 

manner. Adaptation is done automatically, and is guided 

by contextual information, which also provides constraints 

for strategy selection. By utilizing the IR signal, we can 

overcome some of the limitations of the visible cameras 

and by combining the visible and IR signal we improve 

the detection under a variety of conditions. 

3. Technical Approach 

The detection algorithm in Figure 1 requires a model of 

the background. This model is estimated by a mixture of 

Gaussians per pixel.  

Representation: The probability of a pixel classified as a 

background drawn from a probability distribution can be 

estimated by a mixture of density functions. Assuming the 

parametric form of the mixture is Gaussian, probability of 

observing background is:       ),,x(W)x(P ii

g

1i

i Σ=
=

µη

Where x is the pixel value, W is the prior, g is the number 

of Gaussians, and η is the Gaussian with mean µ and co-

variance Σ. Each pixel is then defined by its first order 

statistics for each sensor S∈{R, G, B, T} as an “individ-

ual” where R, G, B are color and T is temperature:   
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For optimal representation, a population of individuals of 

the form IS called a sub-population is maintained for each 

sensor. To form the complete representation of a pixel, a 

4D vector is used by concatenating each IS from each sen-

sor: Î = <IR, IG, IB, IT>. We assume independence be-

tween channels. Î represents a solution instance or organ-

ism; we maintain a matrix: M = [Î1,…, În] t
 to represent 

the solution space where t is the transpose operation. 

Background Model Estimation: A model of background 

must be built and maintained before detection is per-

formed. Unlike the previous work that infers this model 

solely based on available statistics, we introduce physics-

based prediction that complements observations for each 

respective channel. This provides an enormous generaliz-

ing power not available with any existing purely statisti-

cal-based approaches.  

To estimate and select the optimal representation for each 

pixel, we introduce an evolutionary method, the coopera-

tive coevolution (CC) algorithm [6], into the adaptation 

loop. In CC, a solution (i.e., organism) is formed by se-

lecting the best “individual” from a sub-population and 

concatenating it with individuals of other sub-populations. 

Each sub-population of individuals is maintained sepa-

rately and does not represent a solution by itself.  The 

solution is selected from a population of organisms (i.e., 

matrix M) based on an evaluation function, referred to as 

the fitness function. The CC algorithm is given as follows:  

Initialize  sub-populations  

Loop
       Build organisms (e.g., solution space) 

       Evaluate  and  Store the best organism 

       For each subpopulation 

             Evolve each subpopulation  

        EndFor 

Until stop Condition 
       Return the best organism (e.g., solution) 

• Fitness Function: The CC algorithm requires an 

evaluation mechanism for selecting the best solution. We 

provide a suitable fitness function for this evaluation. The 
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fitness function integrates the statistics collected by the 

system and the physical models that are directed by the 

contextual information (environmental conditions). Let 

=

−−+=
n

1j

jj ))
ob

S(P1)(G1()
ob

S(PG
n

1
)I(E

jj

be an individual’s statistical estimation, where P(.) is the 

probability distribution function, Sob
j
 is the jth observation 

in the past for sensor S, and Gj is defined as follows:  
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and n represents a window in the past. To tie the knot with 

the physics, we introduce the following function, named 

credibility function: 
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where SPj is physics-based prediction for sensor S (de-

scribed below) and α is the adaptation rate. The credibil-

ity function adjusts the influence and role of the physics-

based predictions into the adaptive loop. For example, if 

the prediction is close to observation, when it is expected, 

high credibility is assigned to that sensor. It is easy to ver-

ify for example in the extreme case when the predictions 

and observations match the value of CS will be 1 (or 

100%). We can define the following fitness function:  

Forganism  (<Ivideo, IIR>) = Cvideo E(Ivideo) + CIR E (IIR)

The higher the value of F, a better representation is cap-

tured by the individual sensor. Note that all the equations 

are functions of time. 

• Physics-based Prediction: The fitness function above 

requires a predicted value (SPj
) for each sensing modality 

S. We have integrated a number of these models for both 

the visible and thermal IR, that can predict reflectance and 

thermal radiance for urban type materials [5]. We adapt 

the dichromatic reflection model [7] as follows: 

L(λ, ê) = Li(λ, ê) + Lb(λ,ê) =mi(ê) Ci(λ) + mb(ê) Cb(λ);

where L is the total reflected intensity, Li and Lb are re-

flected intensities due to surface and subsurface respec-

tively, mi and mb are geometric terms, Ci and Cb are rela-

tive spectral power distribution (SPD) of the surface and 

subsurface respectively, and ê is a vector representing 

incident and reflected angles with respect to surface nor-

mal. Cb can be robustly calculated using singular value 

decomposition for a surface.  Similarly, we use a thermal 

model based on the conservation of energy Ein = Eout,

where Ein is the  input energy flux due mainly to sun’s 

irradiation and Eout = Erad + Ecv + Ecd where output loss is 

due to radiation, convection and conduction to the envi-

ronment respectively. Various empirical models are ob-

tained for each energy flux for thermal prediction.  

4. Experiments 

The data was gathered at a typical urban location with the 

latitude 33:50:06 and longitude 117:54:49, from 15:30:00 

on January 21, 2003 till 14:24:00 January 22, 2003. Two 

cameras, a thermal camera operating at 7-13 µm and a 

web-cam operating in the visible range were utilized for 

data acquisition. The thermal camera was fully radiomet-

ric and the radiation-to-temperature conversion was done 

automatically by the camera for the default values of 

emissivity = 0.92, ambient temperatures = 280
o
 K, dis-

tance to target = 100m, and humidity = 50%.  

For spatial registration affine transformation was applied 

and to avoid temporal registration, both cameras were 

triggered simultaneously and in parallel. For predicting 

correct reflectance and thermal predictions, a split and 

merge algorithm initially segmented a background image 

where a user initially labeled the segments into 5 regions, 

asphalt, concrete, grass, bush, and unknown. Only statisti-

cal properties were utilized for the unknown surface types.   

The following parameters were used in the CC algorithm 

to update the background models:  

Number of species  = 4;  Population size = 60; Crossover 

= Single point; Crossover rate = 0.8; Recombination rate 

= 0.7; Mutation rate = 0.01; Maximum number of genera-

tions = 60; Training data = 20 frames; Number of Gaus-

sians per sensor = 3; α = 0.5. 

Detection Results: Once the background model is avail-

able, for each incoming frame, each pixel is compared to 

its corresponding model and if its value is within 3 stan-

dard deviation of any of its models, it is classified as 

background. These binary frames provide training data for 

the next background model update. Figure 2 shows sev-

eral frames at different times of the day. It shows results 

for single sensors and the result of the fusion. To quantify 

the results, the following confusion matrix is given for 

each frame: 

% moving obj correctly detected  % moving obj missed 

% background missed  % background correctly detected  

The results indicate that the fusion tracks the illumination 

and thermal changes in the scene. These changes are par-

ticularly adverse during sunset (e.g., frames 2422, 2676) 

and sunrise (e.g., frames 6820, 6890, 6954). 

Another advantage of our method is shown when one sen-

sor does not perform well under a particular instance. For 

example in frame 2676 lack of illumination in the scene 

caused the failure of the video channels (notice only the 

vehicles own lights are visible); on the other hand, frame 

8646 represents the noon time when surface temperature 

can reach as high as the vehicle body’s temperature where 

the lack of thermal contrast has caused the IR to fail in 

detecting the vehicle whereas the fused detection per-

formed better than each sensor alone. It worth noting that 

the detection process is independent of the type of objects; 

for example, frames 6890, 6954 and 9350 include humans 
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at different distances as well.   

5.  Conclusions 

We introduced a novel fusion technique that incorporated 

both a physics-based and statistical method for fusion. We 

introduced a cooperative coevolutionary algorithm in the 

adaptive phase and provided suitable evaluation function 

for optimally searching for the best mixture representa-

tion. The results show that our method robustly detects 

various objects while adapting to environmental changes. 

Our method can be further extended to model other ex-

treme conditions such as snow, rain, etc.  
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Figure 2. Selected frames for moving object detection during a diurnal cycle. (a) IR frames, (b) video frames, (c) regis-
tered video, (d) detected IR, (e) detected video,  (f) detected in fused IR+ video. 
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