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Abstract 
 
      In this paper, genetic programming (GP) is applied to 
synthesize composite operators from primitive operators 
and primitive features for object detection. To improve 
the efficiency of GP, smart crossover, smart mutation and 
a public library are proposed to identify and keep the 
effective components of composite operators. To prevent 
code bloat and avoid severe restriction on the GP search, 
a MDL-based fitness function is designed to incorporate 
the size of composite operator into the fitness evaluation 
process. The experiments with real synthetic aperture 
radar (SAR) images show that compared to normal GP, 
GP algorithm proposed here finds effective composite 
operators more quickly. 
 
1. Introduction 
     Object detection is one of the important steps in 
developing computer vision and pattern recognition 
systems. The major task of object detection is to locate 
objects in images and extract the regions-of-interest 
(ROIs). The quality of object detection is highly 
dependent on the features used in detection. There are 
many features and the ways of synthesizing composite 
features by combining primitive operations and primitive 
features are almost infinite. The human experts, relying 
on their experience, knowledge and limited by their speed 
and bias, consider only a small number of conventional 
combinations and ignore many combinations they regard 
as nonsense. Genetic programming (GP), on the other 
hand, may try many unconventional combinations that 
may yield exceptionally good results. However, GP is 
very computationally expensive. In the traditional GP 
(also called normal GP), crossover and mutation 
locations are randomly selected, leading to disrupting the 
effective components (subtree in this paper) of composite 
operators and greatly reducing the efficiency of GP. To 
improve the efficiency, it is very important for GP to 
identify and keep effective components.  
     In this paper, we use genetic programming (GP) to 
synthesize composite features, which are the output of 
composite operators, for object detection. A composite 
operator is represented by a binary tree whose internal 
nodes are the pre-specified primitive operators and the 

leaf nodes are primitive feature images. It can be viewed 
as a way of combining primitive operations on images for 
ROI extraction [1]. To improve the efficiency of GP, 
smart crossover, smart mutation and a public library are 
proposed in this paper to identify and keep the effective 
components of composite operators for later reuse. We 
also design a fitness function based on the minimum 
description length (MDL) principle [2] to take the size of 
composite operators into the evaluation process to address 
the well-known code bloat problem of GP while at the 
same time avoiding the severe restriction on the GP 
search.  
 
2. Motivation and related research 
• Motivation: Crossover and mutation are two major 
mechanisms employed by GP to search the composite 
operator space. Since the initial population is randomly 
generated, it is unlikely to contain large good 
components. The probability of crossover and mutation 
breaking up a good component is small and the fitness of 
composite operators is increased. As search proceeds, 
small good components are generated and assembled into 
larger and larger good components and composite 
operators become more and more fragile, since the large 
good components are easily broken up by subsequent 
crossover and mutation due to the random selection of 
crossover and mutation points. The crossover can damage 
the fitness of a composite operator by moving good 
components into inhospitable contexts in which their 
effectiveness is canceled by other nodes. It is highly 
desired that good components can be identified from 
disruption and saved in a public library for later reuse. 
     GP has a well-known code bloat problem in which the 
sizes of individuals become larger and larger. It takes a 
long time to execute a large composite operator and large 
composite operators may overfit the training data by 
approximating the noises in images. Usually in normal 
GP, a size limit on composite operator is set up to prevent 
code bloat. However, the hard size limit restricts the GP 
search and makes it unlikely to find effective composite 
operators, since after randomly selecting a crossover 
point in one composite operator, GP cannot select some 
nodes of the other composite operator as crossover points 
in order to guarantee that both offspring are within size 



limit. To overcome this problem, we design a MDL-based 
fitness function to take the composite operator size into 
evaluation process. According to MDL principle, large 
composite operators effective on training regions may not 
have high fitness, so we can take off the hard size limit 
without making composite operators grow too large. 
Large composite operators don’t have high fitness and 
will be culled out by selection.  

• Related Research: Genetic programming has been 
used in image processing, object detection and 
recognition. To improve the efficiency of GP, Tackett [3] 
devises brood recombination to reduce the destructive 
effect of crossover; D’haeseleer [4] devises strong context 
preserving crossover (SCPC) to preserve the context; 
Smith [5] proposes a conjugation operator for GP to 
transfer genetic information from good individuals to bad 
ones. Ito et al. [6] propose a depth-dependent crossover 
for GP in which nodes closer to the root node have better 
chances of being selected as a crossover point to lower 
the chance of disrupting small good components near 
leaves. Unlike the work of Ito [6] that uses only the 
syntax of the tree (the depth of a node), the smart 
crossover and smart mutation proposed in this paper 
evaluate the performance at each node to determine the 
interactions among them and use these semantic 
information to choose crossover and mutation points.  
     Unlike standard genetic algorithms (GAs) working on 
fixed length strings, the individuals in genetic 
programming are complicated structures such as trees and 
graphs of dynamically varying sizes. Messy GAs 
manipulate on variable length chromosomes whose genes 
are represented by the pair (allele locus, allele values) and 
the new representation of chromosomes makes them more 
resistant to the destructive force of crossover, decreasing 
the chances of disrupting effective building blocks [7]. 
Unlike messy GAs, the individuals in this paper are 
composite operators represented by binary trees, not 
variable length chromosomes consisting of string of 
genes. Although the tree structures preclude the use of 
most traditional approaches, such as dynamic 
programming and reinforcement learning, to the learning 
of effective composite operators, they can represent more 
complex features than chromosomes.  

 
3. Technical approach 
• MDL-based fitness function: We design a MDL-
based fitness function to incorporate the composite 
operator size into the fitness evaluation process. The 
fitness of a composite operator is defined as the sum of 
the description length of the composite operator and the 
description length of the segmented training regions with 
respect to this composite operator as a predictor for the 
label (object or background) of each pixel. Here, both 
lengths are measured in bits and the details of the coding 

techniques are relevant. 

F(COi) = - (r×log (Npo) ×Size(COi) + (1 – r) × (no + nb)  
                   ×(log(Wim)+log(Him)))                                 (1) 

where COi is the ith composite operator in the population, 
Npo is the combined number of primitive operators and 
primitive feature images available for GP to synthesize 
composite operators, Size(COi) is the size of the 
composite operator, which is the number of nodes in the 
binary tree representing it, no and nb are the number of 
object and background pixels misclassified, Wim and Him 
are the width and height of the training image and r 
determines the relative importance of the above two terms, 
which is 0.7 for all the examples in this paper. 
     The trade-off between the simplicity and complexity of 
a composite operator is that if the size of the composite 
operator is too small, it may not capture the characteristics 
of the objects to be detected, on the other hand, if the size 
is too large, the composite operator may overfit the 
training image, thus performing poorly on the unseen 
testing images. With the MDL-based fitness function, the 
composite operator with the minimum combined 
description lengths of both the operator itself and image-
to-operator error is the best composite operator and may 
perform best on the unseen testing images. In our previous 
work [1], the fitness function is defined as n(G∩G’) / n(G 
∪ G’), where G and G’ are foreground in the ground truth 
image and the resultant image of the composite operator 
respectively and n(X) denote the number of pixels within 
the intersection of region X and the training regions. It 
measures how the ground truth and detection results 
overlap. In this paper, this measure is called the goodness 
of a composite operator.  

• Primitive feature images and operators: There 
are 16 primitive feature images: the first one is the 
original image (0); the others are mean (1–3), deviation 
(4–6), maximum (7–9), minimum (10–12) and median 
(13–15) images obtained by applying templates of sizes 
3×3, 5×5 and 7×7. These images are the input to 
composite operators. GP determines which operations are 
applied on them and how to combine the results. A 
primitive operator performs a primitive operation on one 
or two input images and stores the resultant image. 
Currently, 17 primitive operators such as ADD, SUB, 
MUL, DIV, MAX2, MIN2, ADDC, SUBC, MULC, 
DIVC, SQRT, LOG, MAX, MIN, MED, MEAN and 
STDV, are used by GP to synthesize composite operators 
[1]. It is worth noting that the primitive feature images 
and primitive operators are domain-independent, so our 
method can be applied to a wide variety of images. 

• Parameters and termination: The key 
parameters are the population size M, the number of 
generation N, the crossover rate, the mutation rate and the 
goodness threshold. The GP stops whenever it finishes 



the pre-specified number of generations or whenever the 
best composite operator in the population has goodness 
value greater than the goodness threshold. 

• Selection, crossover and mutation: The selection 
operation selects composite operators from the current 
population to let them survive into next generation. In this 
paper, we use tournament selection.  
     To perform crossover, two composite operators (called 
parents) are selected on the basis of their fitness values. 
The higher the fitness value, the more likely the 
composite operator will be selected for crossover. In 
normal GP, due to the random selection of crossover 
point, crossover becomes destructive at the later stage of 
GP search when composite operators contain large 
effective components. To avoid the above problem, we 
propose smart crossover to identify and keep the effective 
components. In smart GP, the output image of each node 
is evaluated and its fitness value is recorded. We define 
the fitness of an edge as the fitness difference between the 
parent node and the child node linked by the edge. An 
Edge is classified as good edge if its fitness is positive. 
Otherwise, it is a bad edge. During crossover, all the bad 
edges are identified and one of them is selected by 
random selection or roulette selection (based on the 
fitness of the bad edges) invoked with equal probability. 
The child node of the selected bad edge is the crossover 
point and the subtree rooted at the crossover points are 
swapped between parents. If a composite operator has no 
bad edge, the crossover point is randomly selected. 
     A public library is established to store good 
components for later reuse by smart mutation. The larger 
the library, the more effective components can be kept for 
later reuse, but the likelihood of each effective component 
being reused is reduced.  In this paper, the public library 
stores 100 good components. 
     To avoid premature convergence, mutation is 
introduced to change the structure of some randomly 
selected composite operators. There are three random 
mutations invoked with equal probability: (a) randomly 
select a node of the composite operator and replace the 
subtree rooted at this node by another randomly generated 
binary tree; (b) randomly select a node of the composite 
operator and replace the primitive operator stored in the 
node with another primitive operator randomly selected 
from the primitive operators of the same number of input 
as the replaced one; (c) randomly selected two subtrees of 
the composite operator and swap them. Of course, neither 
of the two sub-trees can be the sub-tree of the other. 
 In the smart mutation, mutation point is the parent or 
child node of a bad edge or a bad node whose goodness 
value is below the average goodness value of all the 
nodes. The mutation point is selected among those 
qualified nodes at random. There are four smart mutations 
invoked with equal probability: (a) select a parent node of 

bad edge as mutation point. If the parent node has only 
one child, the parent is deleted and the child node is 
linked to the grand parent node (parent node of the parent 
node), if no grand parent node exists, the child becomes 
the root node; if the parent node has two children, the 
parent node and the sub-tree rooted at the child with 
smaller fitness value are deleted and the other child is 
linked directly to the grand parent node, if no grand 
parent node exists, the child becomes the root node; (b) 
select a parent node of bad edge as mutation point and 
replace the primitive operator stored in the node with 
another primitive operator of the same number of input as 
the replaced one; (c) select two subtree whose roots are 
child nodes of two bad edges within the composite 
operator and swap them. Of course, neither of the two sub 
trees can be the sub-tree of the other; (d) select a bad 
node as mutation point. Replace the subtree rooted at the 
node with another randomly generated tree or with an 
effective component randomly selected from the public 
library. The first two mutations delete a node that cancel 
the effect of its child or children; the third mutation 
moves two components away from unfriendly contexts 
that cancel their effects and inserts them into new 
contexts; the fourth mutation deletes a bad component 
and replace it with a new component or a good one stored 
in the public library.  
 We use ε-greedy policy to determine whether a smart 
operator (smart crossover or mutation) or a random 
operator (random crossover or mutation) is used. The 
smart operator and random operator are invoked with 
probability ε and 1 - ε, respectively. In this paper, ε is a 
variable and can be adjust by the following formula: 

               ε = εmin + (εmax - εmin) ×Goodpopu                      (2) 

where εmin is 0.5 and εmax  is 0.9, Goodpopu is population 
goodness (the average goodness of composite operators 
in the population). The reason for using random operators 
is that smart operators restrict the GP search by biasing 
the selection of crossover and mutation points. At the 
beginning, GP should search actively to generate 
effective components and assemble them together. It is 
harmful to apply smart operators to restrict the search. 
Only after effective components are gathered in 
composite operators, smart operators should be applied to 
avoid disrupting them and keep them in a public library 
for later reuse. So, in this paper, smart operators are not 
used in the first 20 generations.  

• Generational GP: Generational GP [1] is used to 
synthesize composite operators. In generational GP, two 
composite operators are selected on the basis of their 
fitness values for crossover. The two offspring from 
crossover are kept aside and won’t participate in the 
following crossover operations on the current population. 
The above process is repeated until crossover rate is met. 



Then, mutation is applied to the composite operators in 
the current population and the offspring from crossover. 
Finally, selection is applied to select some composite 
operators from the current population and combine them 
with the offspring from crossover to get a new population 
of the same size as the old one. An elitism method is used 
to keep the best composite operator from generation to 
generation. At the end of each generation, GP replaces 
composite operators by their best components to reduce 
the size of composite operators and avoid overfitting. 
 
4. Experiments 

 Experiments are performed with real SAR images of 
sizes 128×128 and 80×80 (tank images). To synthesize 
composite operators, GP is applied to a region (or 
regions) carefully selected from the training image to 
reduce the training time. The generated composite 
operator is then applied to the whole training image and 
other testing images. For the purpose of objective 
comparison, normal GP (GP with random crossover and 
random mutation) and smart GP (GP with smart 
crossover and smart mutation) are invoked ten times with 
the same parameters and training regions in each 
experiment and only the average performances are used in 
comparison. The results from the run in which GP finds 
the best composite operator among the best composite 
operators found in all ten runs are reported. The 
parameters are: population size (100), the number of 
generation (70), the goodness threshold value (1.0), the 
crossover rate (0.6), the mutation rate (0.05), and the 
segmentation threshold (0). The GP program ran on Sun 
Ultra 2 workstation. 

• Road extraction: Training image contains 
horizontal paved road and field, as shown in Figure 1(a); 
two testing images contain unpaved road vs. field and 
vertical paved road vs. grass, as shown in Figure 5(a) and 
5(d), respectively. Two training regions locate from (5, 
19) to (50, 119) and from (82, 48) to (126, 124). Figure 
1(b) shows the ground truth. The white region 
corresponds to the road and only the ground truth in 
training regions is used in the evaluation. 
     For normal GP, the goodness values of the best 
composite operator in the initial and final populations are 
0.60 and 0.94, respectively. The goodness of the extracted 
ROI from training image is 0.90. For smart GP, the 
fitness and goodness of the best composite operator in the 
initial population are −2303.6 and 0.45. The 
corresponding values in the final population are –325.4 
and 0.94. The goodness of extracted ROI is 0.91. The best 
composite operator has 18 nodes and its depth is 13. It 
has three leaf nodes containing 7×7 median image, which 
contains less speckle noises due to the median filter’s 
effectiveness in eliminating speckle noise. It is shown in 

Figure 2, where PFIM15 represents 7×7 median image. 
Compared to smart GP, the best composite operator from 
normal GP has 27 nodes and its depth is 16. Figure 3 
shows how the average fitness of the best composite 
operator and average fitness of population over all 10 
runs change as GP explore the composite operator space. 
10 best composite operators are obtained in the initial and 
final generations of 10 runs, respectively. Figure 4 shows 
the utility of primitive operators and primitive feature 
images in the best composite operators of initial and final 
generations. To compute utility, we first compute the 
combined numbers of each primitive operator and 
primitive feature image in the 10 best composite 
operators, then divide them by the total number of 
internal nodes and leaf nodes of these 10 best composite 
operators, respectively. From Figure 4(b), it can be seen 
that MED operator has the most frequent occurrence in 
the best composite operators learned by GP. 
 
 
 
 

r
(c) ROI  

(normal GP) 
(d) ROI  

(smart GP)

 
 
(a) paved 

oad vs. field

 
 

Figure 1. T

 
 
 
 
 

(MAX (MAX
(ADDC (MA
PFIM15 (STD

 
 
 
 
 
 
 
 

Figure 2.

-6000
-4000
-2000

0

0 5

fit
ne

ss

Figure 3.
 
 
 
 
 
 
 
 
 
 
 
 
 

0
0.05
0.1

0.15

1 4

primit

ut
ili

ty

0
0.1
0.2

1 4

primitive f

ut
ili

ty

(a

(
 

Figure 4. Ut 
 

(b) ground 
truth 
raining SAR image containing road.  

 (MAX (MAX (MAX (SUBC (MUL (DIVC 
X (MAX (MAX (ADDC PFIM15)))))) (DIV 
V PFIM15))))))))) 

 Learned composite operator tree in 
LISP notation. 

10 15 20 25 30 35 40 45 50 55 60 65 70

generation

best
population

 Fitness versus generation (road vs. field).  

7 10 13 16

ive operator

0
0.1
0.2
0.3

1 4 7 10 13 16

primitive operator

ut
ili

ty

7 10 13 16

eature image

0
0.2
0.4

1 4 7 10 13 16

primitive feature image

ut
ili

ty

(b) final ) Initial 

c) Initial (d) final 

ility of primitive operators and primitive 
feature images. 



      We applied the composite operator to the testing 
images. Figure 5(b) and 5(e) show the ROIs extracted by 
normal GP. Their goodness values are 0.90 and 0.93. 
Figure 5(c) and 5(f) show the ROIs from smart GP. Their 
goodness values are 0.91 and 0.93. The average running 
time of the best composite operators from normal GP on 
training and testing images is 4.2 seconds; the 
corresponding time of that from smart GP is 2.6 seconds. 
 
 
 
 
 
 

• Field extraction: Two SAR images contain field 
and grass. Figure 6(a) and 6(b) show the training image 
and the ground-truth. The training regions are from (17, 
3) to (75, 61) and from (79, 62) to (124, 122). For normal 
GP, the goodness values of the best composite operator in 
the initial and final populations are 0.52 and 0.78. The 
goodness value of the extracted ROI is 0.88. For smart 
GP, the fitness and goodness of the best composite 
operator in the initial population are −7936.2 and 0.39. 
The corresponding values in the final population are 
−1999.4 and 0.79. The goodness value of the extracted 
ROI is 0.90. We apply the composite operator to the 
testing image containing field and grass shown in Figure 
7(a). The goodness values of extracted ROIs from normal 
GP and smart GP are 0.8 and 0.84, respectively. The 
average running time of the best composite operators 
from normal GP on training and testing images is 7 
seconds; the corresponding time of that from smart GP is 
11 seconds 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
• Tank extraction: The training image contains T72 
tank under depression angle 17° and azimuth angle 135°, 
which is shown in Figure 8(a). The training region is 
from (19, 17) to (68, 66). The testing image contains a 

T72 tank under depression angle 20° and azimuth angle 
225°, which is shown in Figure 11(a). The ground-truth is 
shown in Figure 8(b). For normal GP, the goodness 
values of the best composite operator in the initial and 
final populations are 0.65 and 0.88, respectively. The 
goodness value of extracted ROI is 0.88. For smart GP, 
the fitness and goodness of the best composite operator in 
the initial population are −807.2 and 0.54. The 
corresponding values in the final population are –190.8 
and 0.89. The goodness of extracted ROI is 0.89. The best 
composite operator has 5 nodes and its depth is 4. It has 
one leaf node containing 3×3 maximum image. Two 
internal nodes are MED operator, which is useful in 
eliminating speckle noise in SAR images. It is shown in 
Figure 9. The best composite operator from normal GP 
has 28 nodes and its depth is 17. Figure 10 shows how the 
average fitness of the best composite operator and 
average fitness of population over all 10 runs change as 
GP proceeds. 
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Figure 5. Testing SAR image containing road.  
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e apply the composite operator to the testing image. 
goodness values of extracted ROIs from normal GP 
smart GP are 0.8 and 0.84, respectively. The average 
ing time of the best composite operators from normal 
on training and testing images is 3 seconds; the 
sponding time of that from smart GP is 2 seconds. 



• Comparison between normal GP and smart 
GP: We compare the performance of smart GP with that 
of normal GP and only the average performance over all 
ten runs is used in comparison. Figure 12 shows how the 
average goodness of the best composite operator 
improves as the normal GP and smart GP proceed. The 
thick and thin lines show the goodness of smart GP and 
normal GP, respectively. It can be seen that the 
performance of smart GP is always better than normal 
GP, even in the first 20 generations when both smart and 
normal GPs use the same random crossover and mutation. 
The reason is that with MDL-based fitness function used 
in smart GP, the hard size limit on the composite operator 
is taken off, greatly alleviating the restriction on the GP 
search. Table 1 shows the average goodness of the best 
composite operator in the initial and final populations. 
Table 2 shows the average size of the best composite 
operators from normal GP and smart GP. It also shows 
the average goodness of best composite operators on the 
whole training image (TrG) and other testing image(s) 
(TeG). It can be seen that the best composite operators 

learned by smart GP have better performance and smaller 
sizes, thus reducing the computational expense in future 
detection.  
 
 
 
 

Table 1. The average goodness of best composite 
operators from normal and smart GPs. 

 
 
 
 
 

Normal GP Smart GP Average 
goodness Road Field Tank Road Field Tank 

Initial 0.47 0.54 0.49 0.46 0.46 0.41 
Final 0.82 0.73 0.85 0.88 0.75 0.86 

 
 
 

Table 2. Average size and goodness of best composite 
operators from normal and smart GPs. 

Normal GP Smart GP  
Road Field Tank Road Field Tank 

Size 29.4 20.2 24.6 24.6 14.9 5.7 
TrG 0.79 0.79 0.83 0.86 0.84 0.85 
TeG  0.62 

0.80 
0.67 0.77 0.83 

0.92 
0.79 0.82 
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  Figure 12. The average goodness of the best composite operators versus generation. 
 
5. Conclusion  
     In this paper, we evolve composite operators for object 
detection using smart crossover and smart mutation 
operators in genetic programming. We design a MDL-
based fitness function to account for the size of composite 
operator into the fitness evaluation. The new fitness 
function prevents composite operators from growing too 
large while at the same time imposes relatively less severe 
restrictions on the GP search. Our experimental results 
with real SAR images show that with MDL-based fitness 
function and smart search operators, GP can learn good 
composite operators more quickly, improving its 
efficiency. Compared to normal GP, the composite 
operators learned by smart GP have better performance 
on the training and testing images and have smaller sizes, 
reducing the computational expenses during detection. 
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