
MDL-based Genetic Programming for Object Detection

Yingqiang Lin and Bir Bhanu

Center for Research in Intelligent Systems
University of California, Riverside, CA, 92521, USA

Email: {yqlin, bhanu}@vislab.ucr.edu

Abstract

 In this paper, genetic programming (GP) is applied to
synthesize composite operators from primitive operators
and primitive features for object detection. To improve
the efficiency of GP, smart crossover, smart mutation and
a public library are proposed to identify and keep the
effective components of composite operators. To prevent
code bloat and avoid severe restriction on the GP search,
a MDL-based fitness function is designed to incorporate
the size of composite operator into the fitness evaluation
process. The experiments with real synthetic aperture
radar (SAR) images show that compared to normal GP,
GP algorithm proposed here finds effective composite
operators more quickly.

1. Introduction
 Object detection is one of the important steps in
developing computer vision and pattern recognition
systems. The major task of object detection is to locate
objects in images and extract the regions-of-interest
(ROIs). The quality of object detection is highly
dependent on the features used in detection. There are
many features and the ways of synthesizing composite
features by combining primitive operations and primitive
features are almost infinite. The human experts, relying
on their experience, knowledge and limited by their speed
and bias, consider only a small number of conventional
combinations and ignore many combinations they regard
as nonsense. Genetic programming (GP), on the other
hand, may try many unconventional combinations that
may yield exceptionally good results. However, GP is
very computationally expensive. In the traditional GP
(also called normal GP), crossover and mutation
locations are randomly selected, leading to disrupting the
effective components (subtree in this paper) of composite
operators and greatly reducing the efficiency of GP. To
improve the efficiency, it is very important for GP to
identify and keep effective components.
 In this paper, we use genetic programming (GP) to
synthesize composite features, which are the output of
composite operators, for object detection. A composite
operator is represented by a binary tree whose internal
nodes are the pre-specified primitive operators and the

leaf nodes are primitive feature images. It can be viewed
as a way of combining primitive operations on images for
ROI extraction [1]. To improve the efficiency of GP,
smart crossover, smart mutation and a public library are
proposed in this paper to identify and keep the effective
components of composite operators for later reuse. We
also design a fitness function based on the minimum
description length (MDL) principle [2] to take the size of
composite operators into the evaluation process to address
the well-known code bloat problem of GP while at the
same time avoiding the severe restriction on the GP
search.

2. Motivation and related research
• Motivation: Crossover and mutation are two major
mechanisms employed by GP to search the composite
operator space. Since the initial population is randomly
generated, it is unlikely to contain large good
components. The probability of crossover and mutation
breaking up a good component is small and the fitness of
composite operators is increased. As search proceeds,
small good components are generated and assembled into
larger and larger good components and composite
operators become more and more fragile, since the large
good components are easily broken up by subsequent
crossover and mutation due to the random selection of
crossover and mutation points. The crossover can damage
the fitness of a composite operator by moving good
components into inhospitable contexts in which their
effectiveness is canceled by other nodes. It is highly
desired that good components can be identified from
disruption and saved in a public library for later reuse.
 GP has a well-known code bloat problem in which the
sizes of individuals become larger and larger. It takes a
long time to execute a large composite operator and large
composite operators may overfit the training data by
approximating the noises in images. Usually in normal
GP, a size limit on composite operator is set up to prevent
code bloat. However, the hard size limit restricts the GP
search and makes it unlikely to find effective composite
operators, since after randomly selecting a crossover
point in one composite operator, GP cannot select some
nodes of the other composite operator as crossover points
in order to guarantee that both offspring are within size

limit. To overcome this problem, we design a MDL-based
fitness function to take the composite operator size into
evaluation process. According to MDL principle, large
composite operators effective on training regions may not
have high fitness, so we can take off the hard size limit
without making composite operators grow too large.
Large composite operators don’t have high fitness and
will be culled out by selection.

• Related Research: Genetic programming has been
used in image processing, object detection and
recognition. To improve the efficiency of GP, Tackett [3]
devises brood recombination to reduce the destructive
effect of crossover; D’haeseleer [4] devises strong context
preserving crossover (SCPC) to preserve the context;
Smith [5] proposes a conjugation operator for GP to
transfer genetic information from good individuals to bad
ones. Ito et al. [6] propose a depth-dependent crossover
for GP in which nodes closer to the root node have better
chances of being selected as a crossover point to lower
the chance of disrupting small good components near
leaves. Unlike the work of Ito [6] that uses only the
syntax of the tree (the depth of a node), the smart
crossover and smart mutation proposed in this paper
evaluate the performance at each node to determine the
interactions among them and use these semantic
information to choose crossover and mutation points.
 Unlike standard genetic algorithms (GAs) working on
fixed length strings, the individuals in genetic
programming are complicated structures such as trees and
graphs of dynamically varying sizes. Messy GAs
manipulate on variable length chromosomes whose genes
are represented by the pair (allele locus, allele values) and
the new representation of chromosomes makes them more
resistant to the destructive force of crossover, decreasing
the chances of disrupting effective building blocks [7].
Unlike messy GAs, the individuals in this paper are
composite operators represented by binary trees, not
variable length chromosomes consisting of string of
genes. Although the tree structures preclude the use of
most traditional approaches, such as dynamic
programming and reinforcement learning, to the learning
of effective composite operators, they can represent more
complex features than chromosomes.

3. Technical approach
• MDL-based fitness function: We design a MDL-
based fitness function to incorporate the composite
operator size into the fitness evaluation process. The
fitness of a composite operator is defined as the sum of
the description length of the composite operator and the
description length of the segmented training regions with
respect to this composite operator as a predictor for the
label (object or background) of each pixel. Here, both
lengths are measured in bits and the details of the coding

techniques are relevant.

F(COi) = - (r×log (Npo) ×Size(COi) + (1 – r) × (no + nb)
 ×(log(Wim)+log(Him))) (1)

where COi is the ith composite operator in the population,
Npo is the combined number of primitive operators and
primitive feature images available for GP to synthesize
composite operators, Size(COi) is the size of the
composite operator, which is the number of nodes in the
binary tree representing it, no and nb are the number of
object and background pixels misclassified, Wim and Him
are the width and height of the training image and r
determines the relative importance of the above two terms,
which is 0.7 for all the examples in this paper.
 The trade-off between the simplicity and complexity of
a composite operator is that if the size of the composite
operator is too small, it may not capture the characteristics
of the objects to be detected, on the other hand, if the size
is too large, the composite operator may overfit the
training image, thus performing poorly on the unseen
testing images. With the MDL-based fitness function, the
composite operator with the minimum combined
description lengths of both the operator itself and image-
to-operator error is the best composite operator and may
perform best on the unseen testing images. In our previous
work [1], the fitness function is defined as n(G∩G’) / n(G
∪ G’), where G and G’ are foreground in the ground truth
image and the resultant image of the composite operator
respectively and n(X) denote the number of pixels within
the intersection of region X and the training regions. It
measures how the ground truth and detection results
overlap. In this paper, this measure is called the goodness
of a composite operator.

• Primitive feature images and operators: There
are 16 primitive feature images: the first one is the
original image (0); the others are mean (1–3), deviation
(4–6), maximum (7–9), minimum (10–12) and median
(13–15) images obtained by applying templates of sizes
3×3, 5×5 and 7×7. These images are the input to
composite operators. GP determines which operations are
applied on them and how to combine the results. A
primitive operator performs a primitive operation on one
or two input images and stores the resultant image.
Currently, 17 primitive operators such as ADD, SUB,
MUL, DIV, MAX2, MIN2, ADDC, SUBC, MULC,
DIVC, SQRT, LOG, MAX, MIN, MED, MEAN and
STDV, are used by GP to synthesize composite operators
[1]. It is worth noting that the primitive feature images
and primitive operators are domain-independent, so our
method can be applied to a wide variety of images.

• Parameters and termination: The key
parameters are the population size M, the number of
generation N, the crossover rate, the mutation rate and the
goodness threshold. The GP stops whenever it finishes

the pre-specified number of generations or whenever the
best composite operator in the population has goodness
value greater than the goodness threshold.

• Selection, crossover and mutation: The selection
operation selects composite operators from the current
population to let them survive into next generation. In this
paper, we use tournament selection.
 To perform crossover, two composite operators (called
parents) are selected on the basis of their fitness values.
The higher the fitness value, the more likely the
composite operator will be selected for crossover. In
normal GP, due to the random selection of crossover
point, crossover becomes destructive at the later stage of
GP search when composite operators contain large
effective components. To avoid the above problem, we
propose smart crossover to identify and keep the effective
components. In smart GP, the output image of each node
is evaluated and its fitness value is recorded. We define
the fitness of an edge as the fitness difference between the
parent node and the child node linked by the edge. An
Edge is classified as good edge if its fitness is positive.
Otherwise, it is a bad edge. During crossover, all the bad
edges are identified and one of them is selected by
random selection or roulette selection (based on the
fitness of the bad edges) invoked with equal probability.
The child node of the selected bad edge is the crossover
point and the subtree rooted at the crossover points are
swapped between parents. If a composite operator has no
bad edge, the crossover point is randomly selected.
 A public library is established to store good
components for later reuse by smart mutation. The larger
the library, the more effective components can be kept for
later reuse, but the likelihood of each effective component
being reused is reduced. In this paper, the public library
stores 100 good components.
 To avoid premature convergence, mutation is
introduced to change the structure of some randomly
selected composite operators. There are three random
mutations invoked with equal probability: (a) randomly
select a node of the composite operator and replace the
subtree rooted at this node by another randomly generated
binary tree; (b) randomly select a node of the composite
operator and replace the primitive operator stored in the
node with another primitive operator randomly selected
from the primitive operators of the same number of input
as the replaced one; (c) randomly selected two subtrees of
the composite operator and swap them. Of course, neither
of the two sub-trees can be the sub-tree of the other.
 In the smart mutation, mutation point is the parent or
child node of a bad edge or a bad node whose goodness
value is below the average goodness value of all the
nodes. The mutation point is selected among those
qualified nodes at random. There are four smart mutations
invoked with equal probability: (a) select a parent node of

bad edge as mutation point. If the parent node has only
one child, the parent is deleted and the child node is
linked to the grand parent node (parent node of the parent
node), if no grand parent node exists, the child becomes
the root node; if the parent node has two children, the
parent node and the sub-tree rooted at the child with
smaller fitness value are deleted and the other child is
linked directly to the grand parent node, if no grand
parent node exists, the child becomes the root node; (b)
select a parent node of bad edge as mutation point and
replace the primitive operator stored in the node with
another primitive operator of the same number of input as
the replaced one; (c) select two subtree whose roots are
child nodes of two bad edges within the composite
operator and swap them. Of course, neither of the two sub
trees can be the sub-tree of the other; (d) select a bad
node as mutation point. Replace the subtree rooted at the
node with another randomly generated tree or with an
effective component randomly selected from the public
library. The first two mutations delete a node that cancel
the effect of its child or children; the third mutation
moves two components away from unfriendly contexts
that cancel their effects and inserts them into new
contexts; the fourth mutation deletes a bad component
and replace it with a new component or a good one stored
in the public library.
 We use ε-greedy policy to determine whether a smart
operator (smart crossover or mutation) or a random
operator (random crossover or mutation) is used. The
smart operator and random operator are invoked with
probability ε and 1 - ε, respectively. In this paper, ε is a
variable and can be adjust by the following formula:

 ε = εmin + (εmax - εmin) ×Goodpopu (2)

where εmin is 0.5 and εmax is 0.9, Goodpopu is population
goodness (the average goodness of composite operators
in the population). The reason for using random operators
is that smart operators restrict the GP search by biasing
the selection of crossover and mutation points. At the
beginning, GP should search actively to generate
effective components and assemble them together. It is
harmful to apply smart operators to restrict the search.
Only after effective components are gathered in
composite operators, smart operators should be applied to
avoid disrupting them and keep them in a public library
for later reuse. So, in this paper, smart operators are not
used in the first 20 generations.

• Generational GP: Generational GP [1] is used to
synthesize composite operators. In generational GP, two
composite operators are selected on the basis of their
fitness values for crossover. The two offspring from
crossover are kept aside and won’t participate in the
following crossover operations on the current population.
The above process is repeated until crossover rate is met.

Then, mutation is applied to the composite operators in
the current population and the offspring from crossover.
Finally, selection is applied to select some composite
operators from the current population and combine them
with the offspring from crossover to get a new population
of the same size as the old one. An elitism method is used
to keep the best composite operator from generation to
generation. At the end of each generation, GP replaces
composite operators by their best components to reduce
the size of composite operators and avoid overfitting.

4. Experiments

 Experiments are performed with real SAR images of
sizes 128×128 and 80×80 (tank images). To synthesize
composite operators, GP is applied to a region (or
regions) carefully selected from the training image to
reduce the training time. The generated composite
operator is then applied to the whole training image and
other testing images. For the purpose of objective
comparison, normal GP (GP with random crossover and
random mutation) and smart GP (GP with smart
crossover and smart mutation) are invoked ten times with
the same parameters and training regions in each
experiment and only the average performances are used in
comparison. The results from the run in which GP finds
the best composite operator among the best composite
operators found in all ten runs are reported. The
parameters are: population size (100), the number of
generation (70), the goodness threshold value (1.0), the
crossover rate (0.6), the mutation rate (0.05), and the
segmentation threshold (0). The GP program ran on Sun
Ultra 2 workstation.

• Road extraction: Training image contains
horizontal paved road and field, as shown in Figure 1(a);
two testing images contain unpaved road vs. field and
vertical paved road vs. grass, as shown in Figure 5(a) and
5(d), respectively. Two training regions locate from (5,
19) to (50, 119) and from (82, 48) to (126, 124). Figure
1(b) shows the ground truth. The white region
corresponds to the road and only the ground truth in
training regions is used in the evaluation.
 For normal GP, the goodness values of the best
composite operator in the initial and final populations are
0.60 and 0.94, respectively. The goodness of the extracted
ROI from training image is 0.90. For smart GP, the
fitness and goodness of the best composite operator in the
initial population are −2303.6 and 0.45. The
corresponding values in the final population are –325.4
and 0.94. The goodness of extracted ROI is 0.91. The best
composite operator has 18 nodes and its depth is 13. It
has three leaf nodes containing 7×7 median image, which
contains less speckle noises due to the median filter’s
effectiveness in eliminating speckle noise. It is shown in

Figure 2, where PFIM15 represents 7×7 median image.
Compared to smart GP, the best composite operator from
normal GP has 27 nodes and its depth is 16. Figure 3
shows how the average fitness of the best composite
operator and average fitness of population over all 10
runs change as GP explore the composite operator space.
10 best composite operators are obtained in the initial and
final generations of 10 runs, respectively. Figure 4 shows
the utility of primitive operators and primitive feature
images in the best composite operators of initial and final
generations. To compute utility, we first compute the
combined numbers of each primitive operator and
primitive feature image in the 10 best composite
operators, then divide them by the total number of
internal nodes and leaf nodes of these 10 best composite
operators, respectively. From Figure 4(b), it can be seen
that MED operator has the most frequent occurrence in
the best composite operators learned by GP.

r
(c) ROI

(normal GP)
(d) ROI

(smart GP)

(a) paved

oad vs. field

Figure 1. T

(MAX (MAX
(ADDC (MA
PFIM15 (STD

Figure 2.

-6000
-4000
-2000

0

0 5

fit
ne

ss

Figure 3.

0
0.05
0.1

0.15

1 4

primit

ut
ili

ty

0
0.1
0.2

1 4

primitive f

ut
ili

ty

(a

(

Figure 4. Ut

(b) ground
truth
raining SAR image containing road.

 (MAX (MAX (MAX (SUBC (MUL (DIVC
X (MAX (MAX (ADDC PFIM15)))))) (DIV
V PFIM15)))))))))

 Learned composite operator tree in
LISP notation.

10 15 20 25 30 35 40 45 50 55 60 65 70

generation

best
population

 Fitness versus generation (road vs. field).

7 10 13 16

ive operator

0
0.1
0.2
0.3

1 4 7 10 13 16

primitive operator

ut
ili

ty

7 10 13 16

eature image

0
0.2
0.4

1 4 7 10 13 16

primitive feature image

ut
ili

ty

(b) final) Initial

c) Initial (d) final

ility of primitive operators and primitive
feature images.

 We applied the composite operator to the testing
images. Figure 5(b) and 5(e) show the ROIs extracted by
normal GP. Their goodness values are 0.90 and 0.93.
Figure 5(c) and 5(f) show the ROIs from smart GP. Their
goodness values are 0.91 and 0.93. The average running
time of the best composite operators from normal GP on
training and testing images is 4.2 seconds; the
corresponding time of that from smart GP is 2.6 seconds.

• Field extraction: Two SAR images contain field
and grass. Figure 6(a) and 6(b) show the training image
and the ground-truth. The training regions are from (17,
3) to (75, 61) and from (79, 62) to (124, 122). For normal
GP, the goodness values of the best composite operator in
the initial and final populations are 0.52 and 0.78. The
goodness value of the extracted ROI is 0.88. For smart
GP, the fitness and goodness of the best composite
operator in the initial population are −7936.2 and 0.39.
The corresponding values in the final population are
−1999.4 and 0.79. The goodness value of the extracted
ROI is 0.90. We apply the composite operator to the
testing image containing field and grass shown in Figure
7(a). The goodness values of extracted ROIs from normal
GP and smart GP are 0.8 and 0.84, respectively. The
average running time of the best composite operators
from normal GP on training and testing images is 7
seconds; the corresponding time of that from smart GP is
11 seconds

• Tank extraction: The training image contains T72
tank under depression angle 17° and azimuth angle 135°,
which is shown in Figure 8(a). The training region is
from (19, 17) to (68, 66). The testing image contains a

T72 tank under depression angle 20° and azimuth angle
225°, which is shown in Figure 11(a). The ground-truth is
shown in Figure 8(b). For normal GP, the goodness
values of the best composite operator in the initial and
final populations are 0.65 and 0.88, respectively. The
goodness value of extracted ROI is 0.88. For smart GP,
the fitness and goodness of the best composite operator in
the initial population are −807.2 and 0.54. The
corresponding values in the final population are –190.8
and 0.89. The goodness of extracted ROI is 0.89. The best
composite operator has 5 nodes and its depth is 4. It has
one leaf node containing 3×3 maximum image. Two
internal nodes are MED operator, which is useful in
eliminating speckle noise in SAR images. It is shown in
Figure 9. The best composite operator from normal GP
has 28 nodes and its depth is 17. Figure 10 shows how the
average fitness of the best composite operator and
average fitness of population over all 10 runs change as
GP proceeds.

(c) (a) (d) (e))
Figure 5. Testing SAR image containing road.

(MED (MED (SUBC (DIVC PFIM7))))

fit
ne

ss

(a) T72 tank (b) ground
truth

(c) ROI
(normal GP)

Figure 8. Training SAR image containing tank.

(d) ROI
(smart GP)

(a) field vs.
grass

(b) ground
truth

(c) ROI
(normal GP)

Figure 6. Training SAR image containing field.

(d) ROI
(smart GP)

(a
 (c) ROI (smart GP)(a) field vs. grass (b) ROI (normal GP)
 W
The
and
runn
GP
corre

Figure 7. Testing SAR image containing field.
Figure 9. Learned composite operator tree in
LISP notation.
(b)
 (f
Figure 10. Fitness versus generation (T72 tank).

-5000

-3000

-1000

1000

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

generation

best

population

) T72 tank (b) ROI (normal GP) (c) ROI (smart GP)
Figure 11. Testing SAR image containing tank.

e apply the composite operator to the testing image.
goodness values of extracted ROIs from normal GP
smart GP are 0.8 and 0.84, respectively. The average
ing time of the best composite operators from normal
on training and testing images is 3 seconds; the
sponding time of that from smart GP is 2 seconds.

• Comparison between normal GP and smart
GP: We compare the performance of smart GP with that
of normal GP and only the average performance over all
ten runs is used in comparison. Figure 12 shows how the
average goodness of the best composite operator
improves as the normal GP and smart GP proceed. The
thick and thin lines show the goodness of smart GP and
normal GP, respectively. It can be seen that the
performance of smart GP is always better than normal
GP, even in the first 20 generations when both smart and
normal GPs use the same random crossover and mutation.
The reason is that with MDL-based fitness function used
in smart GP, the hard size limit on the composite operator
is taken off, greatly alleviating the restriction on the GP
search. Table 1 shows the average goodness of the best
composite operator in the initial and final populations.
Table 2 shows the average size of the best composite
operators from normal GP and smart GP. It also shows
the average goodness of best composite operators on the
whole training image (TrG) and other testing image(s)
(TeG). It can be seen that the best composite operators

learned by smart GP have better performance and smaller
sizes, thus reducing the computational expense in future
detection.

Table 1. The average goodness of best composite
operators from normal and smart GPs.

Normal GP Smart GP Average
goodness Road Field Tank Road Field Tank

Initial 0.47 0.54 0.49 0.46 0.46 0.41
Final 0.82 0.73 0.85 0.88 0.75 0.86

Table 2. Average size and goodness of best composite
operators from normal and smart GPs.

Normal GP Smart GP
Road Field Tank Road Field Tank

Size 29.4 20.2 24.6 24.6 14.9 5.7
TrG 0.79 0.79 0.83 0.86 0.84 0.85
TeG 0.62

0.80
0.67 0.77 0.83

0.92
0.79 0.82

(c) tank (a) road

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70

generation

go
od

ne
ss smart GP

normal GP

0.4

0.6

0.8

0 10 20 30 40 50 60 70

generation

go
od

ne
ss smart GP

normal GP

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70

generation
go

od
ne

ss smart GP
normal GP

(b) field
 Figure 12. The average goodness of the best composite operators versus generation.

5. Conclusion
 In this paper, we evolve composite operators for object
detection using smart crossover and smart mutation
operators in genetic programming. We design a MDL-
based fitness function to account for the size of composite
operator into the fitness evaluation. The new fitness
function prevents composite operators from growing too
large while at the same time imposes relatively less severe
restrictions on the GP search. Our experimental results
with real SAR images show that with MDL-based fitness
function and smart search operators, GP can learn good
composite operators more quickly, improving its
efficiency. Compared to normal GP, the composite
operators learned by smart GP have better performance
on the training and testing images and have smaller sizes,
reducing the computational expenses during detection.

Acknowledgment: This research is supported by the
grant F33615-99-C-1440. The contents of the information
do not necessarily reflect the position or policy of the
U. S. government.

References
[1] B. Bhanu and Y. Lin, “Learning composite operators for
object detection,” Proc. Genetic and Evolutionary Computation
Conference, pp. 1003-1010, July, 2002.
[2] J. Rissanen, “A universal prior for integers and estimation by
minimum description length,” The Annals of Statistics, Vol. 11,
No. 2, pp. 416 – 431, 1983.
[3] W. Tackett, “Recombination. selection, and the genetic
construction of computer programs,” Ph.D thesis, Univ. of
Southern California, Dept. of Electr. Engg. Systems, 1994.
[4] P. D’haeseleer, “Context preserving crossover in genetic
programming,” Proc. IEEE World Congress on Computational
Intelligence, Vol. 1, pp. 256 – 261, 1994.
[5] P. Smith, “Conjugation – A bacterially inspired form of
genetic recombination,” In Koza, J. R., editor, Late Breaking
Papers at the Genetic Programming Conf., pp. 167 – 176, 1996.
[6] T. Ito, H. Iba and S. Sato, “Depth-dependent crossover for
genetic programming,” Proc. IEEE Int. Conf. on Evolutionary
Computation, pp. 775-780, 1998.
[7] D. Knjazew and D. Goldberg, “Solving permutation
problems with the ordering messy genetic algorithm,” Advances
in Evolutionary Computing – Theory and Applications, A.
Ghoth and S.Tsutsui (Eds), Springer Publisher, pp. 321 – 350,
2002.

	References

