

Learning Features for Fingerprint Classification

Xuejun Tan, Bir Bhanu and Yingqiang Lin
Center for Research in Intelligent Systems

University of California, Riverside, CA 92521, USA
{xtan, bhanu, yqlin}@cris.ucr.edu

Abstract. In this paper, we present a fingerprint classification approach based
on a novel feature-learning algorithm. Unlike current research for fingerprint
classification that generally uses visually meaningful features, our approach is
based on Genetic Programming (GP), which learns to discover composite op-
erators and features that are evolved from combinations of primitive image
processing operations. Our experimental results show that our approach can
find good composite operators to effectively extract useful features. Using a
Bayesian classifier, without rejecting any fingerprints from NIST-4, the correct
rates for 4 and 5-class classification are 93.2% and 91.2% respectively, which
compare favorably and have advantages over the best results published to date.

1 INTRODUCTION

The Henry System is a systematic method for classifying fingerprints into five
classes: Right Loop (R), Left Loop (L), Whorl (W), Arch (A), and Tented Arch (T).
Figure 1 shows the examples of each class. This system of fingerprint classification is
commonly used by almost all the developers and users. The most widely used ap-
proaches for fingerprint classification are based on the number and relations of the
singular points (SPs), which are defined as the points where a fingerprint’s orientation
field is discontinuous. Using SPs as reference points, Karu and Jain [8] present a
classification approach based on the structural information around SPs. Most other
research uses a similar method: first, find the SPs and then use a classification algo-
rithm to find the difference in areas, which are around the SPs for different classes.
Several representations based on principal components analysis (PCA) [10], self-
organizing map (SOM) [11] and Gabor filters [12] are used. The problems with these
approaches are: (a) it is not easy to detect the SPs and some fingerprints do not have
SPs; (b) the uncertainty in the location of SPs is large, which has great effect on the
classification performance since the features around the SPs are used. Cappelli et al.
present a structural analysis of a fingerprint’s orientation field [9]. Jain and Minut
propose a classification algorithm based on finding the kernel that best fits the flow
field of the given fingerprint [15]. Both approaches are unnecessary to find the SPs.
Researchers have also tried different methods to combine different classifiers to im-
prove the classification performance. Senior [13] combines Hidden Markov Models
(HMM), decision trees and PCASYS (a standard fingerprint classification algorithm)
[10]. Yao et al. [14] present new fingerprint classification algorithms based on two
machine learning approaches: support vector machines (SVMs) and recursive neural
networks (RNNs). The features used in those approaches are well-defined conven-
tional known features. Unconventional features discovered by the computer are never
used in fingerprint classification.

In most imaging applications, the task of finding a good feature is equivalent to
finding a good point in the search space of composite operators, where a composite
operator consists of primitive operators and it can be viewed as a selected combina-
tion of primitive operations applied on images. Our Genetic Programming (GP) based
approach may try many unconventional ways of combining primitive operations that
may never be imagined by humans and yield exceptionally good results. The parallel-
ism of GP and the speed of computers allow the search space explored by GP to be
much larger than that by human experts. As the search goes on, GP will gradually
shift the population of composite operators to the portion of the space containing
good composite operators.

Fig. 1. Examples of fingerprints from each class of Henry System for fingerprint classification.

Genetic Programming (GP) was first proposed by Koza in [1]. Poli [2] used GP to
develop effective image filters to enhance and detect features of interest or to build
pixel-classification-based segmentation algorithms. Stanhope and Daida [3] used GP
paradigm for the generation of rules for target/clutter classification and rules for the
identification of objects. Howard et al. [4] applied GP for automatic detection of ships
in low-resolution SAR imagery using an approach that evolves detectors. Roberts and
Howard [5] used GP to develop automatic object detectors in infrared images.

The contributions of our work are: (a) we develop an approach to learn the com-
posite operator based on primitive features automatically. This may help us to find
some useful unconventional features, which are beyond the imagination of humans.
The primitive operators defined in this paper are very basic and easy to compute. (b)
Primitive operators are separated into computation operators and feature generation
operators. Features are computed wherever feature generation operators are used. (c)
Results are shown on the entire NIST-4 fingerprint database and they are compared
with the other published research.

R L W
A T

2 TECHNICAL APPROACH

Figure 2 shows the block diagram of our approach. During the training, GP is used
to generate compositor operators, which are applied to the primitive features gener-
ated from the original orientation field. Feature vectors used for fingerprint classifica-
tion are generated by composite operators. A Bayesian classifier is used for classifica-
tion. During training, fitness value is computed according to the classification result
and used for evolution. During testing, the learned composite operator is applied
directly to generate feature vectors. Note that, in our approach, we do not need to find
the reference points. The major design considerations of GP include:

Fig. 2. Block diagram of our approach.

• The Set of Terminals: For a fingerprint, we can estimate the orientation field
[6]. The set of terminals used in this paper are called primitive features, which are
generated from the orientation field. Primitive features used in our experiments are :
1) original orientation image; 2) mean, standard deviation, min, max and median
images obtained by applying 3×3 and 5×5 templates on orientation image; 3) edge
images obtained by applying sobel filters along horizontal and vertical directions on
orientation image; 4) binary image obtained by thresholding the orientation image
with a threshold of 90. Note that, local orientation θ∈ [0, 180); and 5) images ob-
tained by applying sin and cos operations on the orientation image. These 16 images

Training

No

Fingerprints

Extract orientation field and
generate primitive features

GP generates composite operator

Compute fitness value for the com-
posite operators based on the Bayes-

ian classification

Terminate GP?

Yes

Composite Operator
Classification parameters

Testing

Fingerprints

Extract orientation field and
generate primitive features

Apply composite operator

Classification

Feature Vectors

R L W A T

Generate feature vectors for each finger-
print using the composite operator

are input to the composite operators. GP determines which operations are applied on
them and how to combine the results.

Table 1. Primitive operators used in our approach.

• The Set of Primitive Operators: A primitive operator takes one or two input
images, performs a primitive operation on them and outputs a resultant image. Sup-
pose 1) A and B are images of the same size and c is a constant, c∈ [-100,+100]; 2)
for operators, which take two images as input, the operations are performed on the
pixel-by-pixel basis. Currently, there are two kinds of primitive operators in our ap-
proach: computation operators and feature generation operators. Table 1 explains the
meaning of these operators in detail. For computation operators, the output is an im-
age, which is generated by applying the corresponding operations on the input image.
However, for feature generation operators, the output includes an image and a real
number or vector. The output image is the same as the input image and passed as the
input image to the next node in the composite operator. The real number or vector is

Primitive Operator Meaning

ADD_OP, SUB_OP, MUL_OP and
DIV_OP

A+B, A–B, A×B and A/B. If the pixel in B has
value 0, the corresponding pixel in A/B takes

the maximum pixel value in A.
MAX2_OP and MIN2_OP max(A,B) and min(A,B)

ADD_CONST_OP, SUB_CONST_OP,
MUL_CONST_OP and DIV_CONST_OP

A+c, A-c, A×c and A/c

SQRT_OP and LOG_OP
AAsign ×)(and

)log()(AAsign × .

MAX_OP, MIN_OP, MED_OP,
MEAN_OP and STD_OP

max(A), min(A), med(A), mean(A) and std(A),
replace the pixel value by the maximum,

minimum, median, mean or standard deviation
in a 3×3 block

BINARY_ZERO_OP and
BINARY_MEAN_OP

threshold/binarize A by zero or mean of A

NEGATIVE_OP -A

LEFT_OP, RIGHT_OP, UP_OP and
DOWN_OP

left(A), right(A), up(A) and down(A). Move A
to the left, right, up or down by 1 pixel. The

border is padded by zeros

Computation
Operators

HF_DERIVATIVE_OP and
VF_DERIVATIVE_OP

HF(A) and VF(A). Sobel filters along horizon-
tal and vertical directions

SPE_MAX_OP, SPE_MIN_OP,
SPE_MEAN_OP, SPE_ABS_MEAN_OP

and SPE_STD_OP

max2(A), min2(A), mean2(A), mean2( A)
and std2(A)

SPE_U3_OP and SPE_U4_OP
µ3(A) and µ4(A). Skewness and kurtosis of the

histogram of A
SPE_CENTER_MOMENT11_OP µ11(A). First order central moments of A

SPE_ENTROPY_OP H(A). Entropy of A

Feature
Generation
Operators

SPE_MEAN_VECTOR_OP and
SPE_STD_VECTOR_OP

mean_vector(A) and std_vector(A). A vector
contains the mean or standard deviation value

of each row/column of A

the elements of the feature vector, which is used for classification. Thus, the size of
the feature vectors depends on the number of the feature generation operators that are
a part of the composite operator.

• Generation of New Composite Operator: Composite operators are represented
by binary trees whose internal nodes represent the primitive operators and leaf nodes
represent the primitive features. The search of GP is done by performing reproduc-
tion, crossover and mutation operations. The initial population is randomly generated.
The reproduction operation used in our approach is based on tournament selection.
To perform crossover, two composite operators are selected on the basis of their fit-
ness values. One internal node in each of these two parents is randomly selected, and
the two subtrees with these two nodes as root are exchanged between the parents. In
this way, two new composite operators are created. Once a composite operator is
selected to perform mutation operation, an internal node of the binary tree represent-
ing this operator is randomly selected, and the subtree rooted at this node is deleted,
including the node selected. Another binary tree is randomly generated and this tree
replaces the previously deleted subtree. The resulting new binary tree replaces the old
one in the population. We use steady-state GP in our experiments. A detailed descrip-
tion of it can be found in Koza [1].

• The Fitness Measure: During training, at every generation for each composite
operator proposed by GP, we compute the feature vector and estimate the Probability
Distribution Function (PDF) for each class using all the available feature vectors.
Suppose the feature vectors for each class have normal distribution, vi,j , where i =
1,2,3,4,5 and j=1,2,…ni , ni is the number of feature vectors in the training for class i,
ωi . Then, for each i, we estimate the mean µi and covariance matrix Σi by all vi,j , and
the PDF of ωi can be expressed as:

()
))�(x)�(x

2

1
exp(

2�

1
)�p(x i

1
i

T
i1/2

i
n/2i −∑−−

∑
= −

 (1)

According to Bayesian theory, we have

))p(�)�(p(vmax) p(�)�, iff. p(v�v ii
1,2,3,4,5i

kkk ⋅=⋅∈
=

 (2)

where } ... v v{vx
ii,ni,2i,1∈ , n is the size of feature vector and v is a feature vector

for classification. During training, we estimate p(x ωi), then use the entire training set
to do the classification. The Percentage of Correct Classification (PCC) is taken as the
fitness value of the composite operator.

100%
n

n
lueFitness Va

s

c ×= (3)

where nc is the number of correctly classified fingerprints in training set and ns is the
size of training set. Note that, if  Σi =0 for ωi in equation (1), we simply let the fit-
ness value of the composite operator be 0. During testing, we still use equation (2) to
obtain the classification results on the testing set, however, none of the testing finger-
prints is used in the training.

• Parameters and Termination: The key parameters are maximum size of com-
posite operator (150), population size (100), number of generations (100), crossover
rate (0.6), and mutation rate (0.05). The GP stops whenever it finishes the pre-
specified number of generations.

Fig. 3. Learned composite operator for 5-class classification.

3 EXPERIMENTS

3.1 Database

The database used in our experiments is the NIST Special Database 4 (NIST-4)
[11]. The size of the fingerprint images is 480×512 pixels with a resolution of 500
DPI. NIST-4 contains 2000 pairs of fingerprints. Some sample fingerprints are shown
in Figure 1. We use the first 1000 pairs of fingerprints for training and the second
1000 pairs of fingerprints for testing. In order to reduce the effect of overfitting, for
the 1000 pairs of fingerprints in training, we only use first 500 pairs to estimate the
parameters for each class and use the entire training set to validate the training results.

Table 2. Confusion matrix of the testing results for 5 and 4-class classifications.

3.2 Experimental Results

We performed the experiments 10 times and took the best result as the learned
composite operator. Figure 3 shows the best composite operator for 5-class classifica-

 R L W A T
R 356 4 16 3 10

L 12 372 15 3 24

W 4 6 369 0 2

A 8 9 0 416 19

T 23 3 1 8 337

 R L W A/T
R 381 4 11 23

L 11 375 5 40

W 1 4 382 1

A/T 20 12 3 741

Composite Operator for 5-class classification, size 61:
((SUB_OP) ((MIN_OP) ((HF_DERIVATIVE_OP) ((HF_DERIVATIVE_OP) ((ADD_CONST_OP) (
(MUL_OP) ((SPE_STD_VECTOR_OP) ((STDV_OP) ((SPE_CENTER_MOMENT11_OP) (
(SQRT_OP) ((SUB_CONST_OP) ((VF_DERIVATIVE_OP) ((MEAN_OP) ((INPUT_OP: 0))))))))
) ((SUB_CONST_OP) ((HF_DERIVATIVE_OP) ((SUB_CONST_OP) ((HF_DERIVATIVE_OP) (
(ADD_CONST_OP) ((SUB_CONST_OP) ((ADD_CONST_OP) ((MUL_OP) ((SPE_STD_OP) (
(MEAN_OP) ((LOG_OP) ((SPE_MEAN_VECTOR_OP) ((SQRT_OP) ((RIGHT_OP) (
(SPE_MIN_OP) ((ABS_OP) ((MEAN_OP) ((INPUT_OP: 0))))))))))) ((SUB_CONST_OP) (
(SPE_MEAN_VECTOR_OP) ((SPE_STD_VECTOR_OP) ((SPE_MIN_OP) ((STDV_OP) (
(SPE_CENTER_MOMENT11_OP) ((SPE_U3_OP) ((SPE_STD_VECTOR_OP) ((SPE_MIN_OP) (
(STDV_OP) ((SPE_CENTER_MOMENT11_OP) ((SPE_U3_OP) ((UP_OP) ((SPE_MEAN_OP) (
(INPUT_OP: 1) ((SUB_CONST_OP) ((SPE_MEAN_OP) (
(SQRT_OP) ((SUB_CONST_OP) ((SPE_U3_OP) ((SPE_U4_OP) ((SPE_STD_VECTOR_OP) (
(SPE_MIN_OP) ((STDV_OP) ((SPE_CENTER_MOMENT11_OP) ((SQRT_OP) ((SUB_CONST_OP)
((VF_DERIVATIVE_OP) ((INPUT_OP: 13))))))))))))))))

tion, whose size is 61. Out of these 61 operators, there are 21 feature generation op-
erators and the length of the feature vector is 87. The size of the best composite op-
erator for 4-class classification is 149, which is much larger and not convenient to be
shown directly. Obviously, these composite operators are not easy to be constructed
by humans. Note that, it is possible to perform feature selection to reduce the size of
feature vectors. During training, our approach runs slowly. Usually, it takes about 60
minutes for one generation to evolve. However, in testing, since it only needs to apply
composite operator to the corresponding primitive operators, it runs very fast. On a
SUN Ultra II workstation with a 200MHZ CPU, the average run-times for one finger-
print test for 5-class and 4-class classifications are 40ms and 71ms, respectively.

Table 3. Classification results on NIST-4.

Approaches
Class

Error rate

%
Reject
rate %

Dataset Comments

5 14.6 Karu and Jain
1996 [8] 4 8.6

zero
4000 images, no

training

Decision based on
topological infor-

mation
Jain and Minut

2002 [15]
4 8.7 zero Same as above

Hierarchical kernel
fitting

5 14.6
4 8.5

KNN

5 13.6
4 7.9

Neural Network

5 10.0

Jain et al. 1999
[12]

4 5.2

1.8

Training: First
2000 images

Testing: Second
2000 images KNN+NN, two

stage classifier
Senior 2001

[13]
4 Average 8.51 zero Same as above

Neural Network
fusion with priors

5 10.0 Yao et al. 2003
[14] 4 5.3

1.8 Same as above SVM+RNN

5 8.4
This paper

4 6.7
zero Same as above

GP based learned
features + Bayesian

classifier

Table 2 shows the confusion matrix of our testing results on the second 1000 pairs

of fingerprint in NIST-4. Note that, because of bad quality, the ground truths of some
fingerprints provided by NIST-4 fingerprint database contain 2 classes, i.e. the
ground truths of f0008_10 include class T and L. As other researchers did in their
experiments, we only use the first ground truth label to estimate the parameters of the
classifier. However, in testing, we use all the ground truth labels and consider a test as
correctly classified if the output of the system matches to one of the ground truths.
The PCC is 93.2% and 91.2% for 4 and 5-class classifications respectively. The
classes R, L, W, A and T are uniformly distributed in NIST-4. However, in nature,
the frequencies of their occurrence are 31.7%, 33.8%, 27.9%, 3.7% and 2.9%, respec-
tively. From Table 2, we observe that most of the classification errors are related to
classes A and T. Considering that A and T occur less frequently in nature, our ap-

1 3.1%, 4.2%, 4.5% and 22.3% for R,L,W and A/T respectively.

proach is expected to perform better in real world. Table 3 shows the results on NIST-
4 database reported by other researchers. Considering that we have not rejected any
fingerprints from NIST-4, our result is one of the best. For the 5-class classification,
our result has 1.6% advantage over the result shown in [12], although in [12] the
reject rate is 1.8%.

4 CONCLUSIONS

In this paper, we proposed a learning algorithm for fingerprint classification based on
GP. Our experimental results show that the primitive operators selected by us are
effective and GP can find good composite operators, which are beyond humans’
imagination, to extract the feature vectors for fingerprint classification. The experi-
mental results on NIST-4 fingerprint database show that our approach is one of the
best approaches. Without rejecting any fingerprints, the experimental results show
that our approach is promising and has advantages over the best results reported in
the literatures.

Acknowledgments: This work is supported in part by a grant from SONY, DiMI, I/O Software
and F49620-02-1-0315. The contents and information do not necessarily reflect the positions or policies
of the sponsors.

References

1. J.R. Koza, Genetic Programming II: Automatic Discovery of Reusable Programs, MIT Press, 1994.
2. R. Poli, Genetic programming for feature detection and image segmentation, Evolutionary Computa-

tion, T.C. Forgarty Ed., pp. 110-125, 1996.
3. S.A. Stanhope and J.M. Daida, Genetic programming for automatic target classification and recognition

in synthetic aperture radar imagery, Proc. Evolutionary Programming VII, pp. 735-744, 1998.
4. D. Howard, S.C. Roberts, and R. Brankin, Target detection in SAR imagery by genetic programming,

Advances in Eng. Software, 30(5), pp. 303-311, May 1999.
5. S.C. Roberts and D. Howard, Evolution of vehicle detectors for infrared line scan imagery, Proc.

Evolutionary Image Analysis, Signal Processing and Telecommunications, pp. 110-125, 1999.
6. A.M. Bazen and S.H. Gerez, Systematic methods for the computation of the directional fields and

singular points of fingerprints, IEEE Trans. on PAMI, vol. 24, no. 7, pp. 905-919, July 2002.
7. C.I. Watson and C.L. Wilson, NIST special database 4, fingerprint database, U.S. National Institute of

Standards and Technology, 1992.
8. K. Karu and A.K. Jain, Fingerprint classification, Pattern Recognition, 29(3), pp. 389-404, 1996.
9. R. Cappelli, A. Lumini, D. Maio and D. Maltoni, Fingerprint classification by directional image parti-

tioning, IEEE Trans. PAMI, vol. 21, no. 5, pp. 402-421, 1999.
10. G.T. Candela, P.J. Grother, C.I. Watson, R.A. Wilkinson and C.L. Wilson, PCASYS --- a pattern-level

classification automation system for fingerprints, Technical Report NISTIR 5647, NIST, Apr. 1995.
11. U. Halici and G. Ongun, Fingerprint classification through self-organizing feature maps modified to

treat uncertainties, Proc. IEEE, vol. 84, no. 10, pp. 1497-1512, Oct. 1996.
12. A.K. Jain, S. Prabhakar and L. Hong, A multichannel approach to fingerprint classification, IEEE

Trans. on PAMI, vol. 21, no. 4, pp. 348-359, Apr. 1999.
13. A. Senior, A combination fingerprint classifier, IEEE Trans. on PAMI, 23(10), pp. 1165-1174, 2001.
14. Y. Yao, G.L. Marcialis, M. Pontil, P. Frasconi and F. Roli, Combining flat and structured representa-

tions for fingerprint classification with recursive neural networks and support vector machines, Pattern
Recognition, vol. 36, no. 2, pp. 397-406, Feb. 2003.

15. A.K. Jain and S. Minut, Hierarchical kernel fitting for fingerprint classification and alignment, Proc.
ICPR, vol. 2, pp. 469-473, 2002.

