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Abstract. In this paper, we present a fingerprint classification approach based 
on a novel feature-learning algorithm. Unlike current research for fingerprint 
classification that generally uses visually meaningful features, our approach is 
based on Genetic Programming (GP), which learns to discover composite op-
erators and features that are evolved from combinations of primitive image 
processing operations. Our experimental results show that our approach can 
find good composite operators to effectively extract useful features. Using a 
Bayesian classifier, without rejecting any fingerprints from NIST-4, the correct 
rates for 4 and 5-class classification are 93.2% and 91.2% respectively, which 
compare favorably and have advantages over the best results published to date. 

1   INTRODUCTION 

The Henry System is a systematic method for classifying fingerprints into five 
classes: Right Loop (R), Left Loop (L), Whorl (W), Arch (A), and Tented Arch (T). 
Figure 1 shows the examples of each class. This system of fingerprint classification is 
commonly used by almost all the developers and users. The most widely used ap-
proaches for fingerprint classification are based on the number and relations of the 
singular points (SPs), which are defined as the points where a fingerprint’s orientation 
field is discontinuous. Using SPs as reference points, Karu and Jain [8] present a 
classification approach based on the structural information around SPs. Most other 
research uses a similar method: first, find the SPs and then use a classification algo-
rithm to find the difference in areas, which are around the SPs for different classes. 
Several representations based on principal components analysis (PCA) [10], self-
organizing map (SOM) [11] and Gabor filters [12] are used. The problems with these 
approaches are: (a) it is not easy to detect the SPs and some fingerprints do not have 
SPs; (b) the uncertainty in the location of SPs is large, which has great effect on the 
classification performance since the features around the SPs are used. Cappelli et al. 
present a structural analysis of a fingerprint’s orientation field [9]. Jain and Minut 
propose a classification algorithm based on finding the kernel that best fits the flow 
field of the given fingerprint [15]. Both approaches are unnecessary to find the SPs. 
Researchers have also tried different methods to combine different classifiers to im-
prove the classification performance. Senior [13] combines Hidden Markov Models 
(HMM), decision trees and PCASYS (a standard fingerprint classification algorithm) 
[10]. Yao et al. [14] present new fingerprint classification algorithms based on two 
machine learning approaches: support vector machines (SVMs) and recursive neural 
networks (RNNs). The features used in those approaches are well-defined conven-
tional known features. Unconventional features discovered by the computer are never 
used in fingerprint classification. 



 

In most imaging applications, the task of finding a good feature is equivalent to 
finding a good point in the search space of composite operators, where a composite 
operator consists of primitive operators and it can be viewed as a selected combina-
tion of primitive operations applied on images. Our Genetic Programming (GP) based 
approach may try many unconventional ways of combining primitive operations that 
may never be imagined by humans and yield exceptionally good results. The parallel-
ism of GP and the speed of computers allow the search space explored by GP to be 
much larger than that by human experts. As the search goes on, GP will gradually 
shift the population of composite operators to the portion of the space containing 
good composite operators. 

Fig. 1. Examples of fingerprints from each class of Henry System for fingerprint classification. 

Genetic Programming (GP) was first proposed by Koza in [1]. Poli [2] used GP to 
develop effective image filters to enhance and detect features of interest or to build 
pixel-classification-based segmentation algorithms. Stanhope and Daida [3] used GP 
paradigm for the generation of rules for target/clutter classification and rules for the 
identification of objects. Howard et al. [4] applied GP for automatic detection of ships 
in low-resolution SAR imagery using an approach that evolves detectors. Roberts and 
Howard [5] used GP to develop automatic object detectors in infrared images. 

The contributions of our work are: (a) we develop an approach to learn the com-
posite operator based on primitive features automatically. This may help us to find 
some useful unconventional features, which are beyond the imagination of humans. 
The primitive operators defined in this paper are very basic and easy to compute. (b) 
Primitive operators are separated into computation operators and feature generation 
operators. Features are computed wherever feature generation operators are used. (c) 
Results are shown on the entire NIST-4 fingerprint database and they are compared 
with the other published research. 
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2   TECHNICAL APPROACH 

Figure 2 shows the block diagram of our approach. During the training, GP is used 
to generate compositor operators, which are applied to the primitive features gener-
ated from the original orientation field. Feature vectors used for fingerprint classifica-
tion are generated by composite operators. A Bayesian classifier is used for classifica-
tion. During training, fitness value is computed according to the classification result 
and used for evolution. During testing, the learned composite operator is applied 
directly to generate feature vectors. Note that, in our approach, we do not need to find 
the reference points. The major design considerations of GP include: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Block diagram of our approach. 

• The Set of Terminals: For a fingerprint, we can estimate the orientation field 
[6]. The set of terminals used in this paper are called primitive features, which are 
generated from the orientation field. Primitive features used in our experiments are : 
1) original orientation image; 2) mean, standard deviation, min, max and median 
images obtained by applying 3×3 and 5×5 templates on orientation image; 3) edge 
images obtained by applying sobel filters along horizontal and vertical directions on 
orientation image; 4) binary image obtained by thresholding the orientation image 
with a threshold of 90. Note that, local orientation θ∈ [0, 180); and 5) images ob-
tained by applying sin and cos operations on the orientation image. These 16 images 
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are input to the composite operators. GP determines which operations are applied on 
them and how to combine the results. 

Table 1. Primitive operators used in our approach. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

• The Set of Primitive Operators: A primitive operator takes one or two input 
images, performs a primitive operation on them and outputs a resultant image. Sup-
pose 1) A and B are images of the same size and c is a constant, c∈ [-100,+100]; 2) 
for operators, which take two images as input, the operations are performed on the 
pixel-by-pixel basis. Currently, there are two kinds of primitive operators in our ap-
proach: computation operators and feature generation operators. Table 1 explains the 
meaning of these operators in detail. For computation operators, the output is an im-
age, which is generated by applying the corresponding operations on the input image. 
However, for feature generation operators, the output includes an image and a real 
number or vector. The output image is the same as the input image and passed as the 
input image to the next node in the composite operator. The real number or vector is 

Primitive Operator Meaning 

ADD_OP, SUB_OP, MUL_OP and 
DIV_OP 

A+B, A–B, A×B and A/B. If the pixel in B has 
value 0, the corresponding pixel in A/B takes 

the maximum pixel value in A. 
MAX2_OP and MIN2_OP max(A,B) and min(A,B) 

ADD_CONST_OP, SUB_CONST_OP, 
MUL_CONST_OP and DIV_CONST_OP 

A+c, A-c, A×c and A/c 

SQRT_OP and LOG_OP 
AAsign ×)(  and 

)log()( AAsign × . 

MAX_OP, MIN_OP, MED_OP, 
MEAN_OP and STD_OP 

max(A), min(A), med(A), mean(A) and std(A), 
replace the pixel value by the maximum, 

minimum, median, mean or standard deviation 
in a 3×3 block 

BINARY_ZERO_OP and 
BINARY_MEAN_OP 

threshold/binarize A by zero or mean of A 

NEGATIVE_OP -A 

LEFT_OP, RIGHT_OP, UP_OP and 
DOWN_OP 

left(A), right(A), up(A) and down(A). Move A 
to the left, right, up or down by 1 pixel. The 

border is padded by zeros 

Computation 
Operators 

HF_DERIVATIVE_OP and 
VF_DERIVATIVE_OP 

HF(A) and VF(A). Sobel filters along horizon-
tal and vertical directions 

SPE_MAX_OP, SPE_MIN_OP, 
SPE_MEAN_OP, SPE_ABS_MEAN_OP 

and SPE_STD_OP 

max2(A), min2(A), mean2(A), mean2( A ) 
and std2(A) 

SPE_U3_OP and SPE_U4_OP 
µ3(A) and µ4(A). Skewness and kurtosis of the 

histogram of A 
SPE_CENTER_MOMENT11_OP µ11(A). First order central moments of A 

SPE_ENTROPY_OP H(A). Entropy of A 

Feature 
Generation 
Operators 

SPE_MEAN_VECTOR_OP and 
SPE_STD_VECTOR_OP 

mean_vector(A) and std_vector(A). A vector 
contains the mean or standard deviation value 

of each row/column of A 

 



 

the elements of the feature vector, which is used for classification. Thus, the size of 
the feature vectors depends on the number of the feature generation operators that are 
a part of the composite operator. 

 

• Generation of New Composite Operator: Composite operators are represented 
by binary trees whose internal nodes represent the primitive operators and leaf nodes 
represent the primitive features. The search of GP is done by performing reproduc-
tion, crossover and mutation operations. The initial population is randomly generated. 
The reproduction operation used in our approach is based on tournament selection. 
To perform crossover, two composite operators are selected on the basis of their fit-
ness values. One internal node in each of these two parents is randomly selected, and 
the two subtrees with these two nodes as root are exchanged between the parents. In 
this way, two new composite operators are created. Once a composite operator is 
selected to perform mutation operation, an internal node of the binary tree represent-
ing this operator is randomly selected, and the subtree rooted at this node is deleted, 
including the node selected. Another binary tree is randomly generated and this tree 
replaces the previously deleted subtree. The resulting new binary tree replaces the old 
one in the population. We use steady-state GP in our experiments. A detailed descrip-
tion of it can be found in Koza [1]. 
 

• The Fitness Measure: During training, at every generation for each composite 
operator proposed by GP, we compute the feature vector and estimate the Probability 
Distribution Function (PDF) for each class using all the available feature vectors. 
Suppose the feature vectors for each class have normal distribution, vi,j , where i = 
1,2,3,4,5 and j=1,2,…ni , ni is the number of feature vectors in the training for class i, 
ωi . Then, for each i, we estimate the mean µi and covariance matrix Σi by all vi,j , and 
the PDF of ωi can be expressed as: 
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for classification. During training, we estimate p(x ωi), then use the entire training set 
to do the classification. The Percentage of Correct Classification (PCC) is taken as the 
fitness value of the composite operator. 
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where nc is the number of correctly classified fingerprints in training set and ns is the 
size of training set. Note that, if  Σi =0 for ωi in equation (1), we simply let the fit-
ness value of the composite operator be 0. During testing, we still use equation (2) to 
obtain the classification results on the testing set, however, none of the testing finger-
prints is used in the training. 



 

 

• Parameters and Termination: The key parameters are maximum size of com-
posite operator (150), population size (100), number of generations (100), crossover 
rate (0.6), and mutation rate (0.05). The GP stops whenever it finishes the pre-
specified number of generations. 

 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Learned composite operator for 5-class classification. 

3   EXPERIMENTS 

3.1   Database 

The database used in our experiments is the NIST Special Database 4 (NIST-4) 
[11]. The size of the fingerprint images is 480×512 pixels with a resolution of 500 
DPI. NIST-4 contains 2000 pairs of fingerprints. Some sample fingerprints are shown 
in Figure 1. We use the first 1000 pairs of fingerprints for training and the second 
1000 pairs of fingerprints for testing. In order to reduce the effect of overfitting, for 
the 1000 pairs of fingerprints in training, we only use first 500 pairs to estimate the 
parameters for each class and use the entire training set to validate the training results. 

Table 2. Confusion matrix of the testing results for 5 and 4-class classifications. 

 
 
 
 
 
 
 

3.2   Experimental Results 

We performed the experiments 10 times and took the best result as the learned 
composite operator. Figure 3 shows the best composite operator for 5-class classifica-

 R L W A T 
R 356 4 16 3 10 

L 12 372 15 3 24 

W 4 6 369 0 2 

A 8 9 0 416 19 

T 23 3 1 8 337 

 

 R L W A/T 
R 381 4 11 23 

L 11 375 5 40 

W 1 4 382 1 

A/T 20 12 3 741 

 

Composite Operator for 5-class classification, size 61: 
( (SUB_OP) ( (MIN_OP) ( (HF_DERIVATIVE_OP) ( (HF_DERIVATIVE_OP) ( (ADD_CONST_OP) ( 
(MUL_OP) ( (SPE_STD_VECTOR_OP) ( (STDV_OP) ( (SPE_CENTER_MOMENT11_OP) ( 
(SQRT_OP) ( (SUB_CONST_OP) ( (VF_DERIVATIVE_OP) ( (MEAN_OP) ( (INPUT_OP: 0) ) ) ) ) ) ) ) 
) ( (SUB_CONST_OP) ( (HF_DERIVATIVE_OP) ( (SUB_CONST_OP) ( (HF_DERIVATIVE_OP) ( 
(ADD_CONST_OP) ( (SUB_CONST_OP) ( (ADD_CONST_OP) ( (MUL_OP) ( (SPE_STD_OP) ( 
(MEAN_OP) ( (LOG_OP) ( (SPE_MEAN_VECTOR_OP) ( (SQRT_OP) ( (RIGHT_OP) ( 
(SPE_MIN_OP) ( (ABS_OP) ( (MEAN_OP) ( (INPUT_OP: 0) ) ) ) ) ) ) ) ) ) ) ( (SUB_CONST_OP) ( 
(SPE_MEAN_VECTOR_OP) ( (SPE_STD_VECTOR_OP) ( (SPE_MIN_OP) ( (STDV_OP) ( 
(SPE_CENTER_MOMENT11_OP) ( (SPE_U3_OP) ( (SPE_STD_VECTOR_OP) ( (SPE_MIN_OP) ( 
(STDV_OP) ( (SPE_CENTER_MOMENT11_OP) ( (SPE_U3_OP) ( (UP_OP) ( (SPE_MEAN_OP) ( 
(INPUT_OP: 1) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ( (SUB_CONST_OP) ( (SPE_MEAN_OP) ( 
(SQRT_OP) ( (SUB_CONST_OP) ( (SPE_U3_OP) ( (SPE_U4_OP) ( (SPE_STD_VECTOR_OP) ( 
(SPE_MIN_OP) ( (STDV_OP) ( (SPE_CENTER_MOMENT11_OP) ( (SQRT_OP) ( (SUB_CONST_OP) 
( (VF_DERIVATIVE_OP) ( (INPUT_OP: 13) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) 



 

tion, whose size is 61. Out of these 61 operators, there are 21 feature generation op-
erators and the length of the feature vector is 87. The size of the best composite op-
erator for 4-class classification is 149, which is much larger and not convenient to be 
shown directly. Obviously, these composite operators are not easy to be constructed 
by humans. Note that, it is possible to perform feature selection to reduce the size of 
feature vectors. During training, our approach runs slowly. Usually, it takes about 60 
minutes for one generation to evolve. However, in testing, since it only needs to apply 
composite operator to the corresponding primitive operators, it runs very fast. On a 
SUN Ultra II workstation with a 200MHZ CPU, the average run-times for one finger-
print test for 5-class and 4-class classifications are 40ms and 71ms, respectively. 

Table 3. Classification results on NIST-4. 

Approaches 
Class 

# 
Error rate 

% 
Reject 
rate % 

Dataset Comments 

5 14.6 Karu and Jain 
1996 [8] 4 8.6 

zero 
4000 images, no 

training 

Decision based on 
topological infor-

mation 
Jain and Minut 

2002 [15] 
4 8.7 zero Same as above 

Hierarchical kernel 
fitting 

5 14.6 
4 8.5 

KNN 

5 13.6 
4 7.9 

Neural Network 

5 10.0 

Jain et al. 1999 
[12] 

4 5.2 

1.8 

Training: First 
2000 images 

Testing: Second 
2000 images KNN+NN, two 

stage classifier 
Senior 2001 

[13] 
4 Average 8.51 zero Same as above 

Neural Network 
fusion with priors 

5 10.0 Yao et al. 2003 
[14] 4 5.3 

1.8 Same as above SVM+RNN 

5 8.4 
This paper 

4 6.7 
zero Same as above 

GP based learned 
features + Bayesian 

classifier 

 
Table 2 shows the confusion matrix of our testing results on the second 1000 pairs 

of fingerprint in NIST-4. Note that, because of bad quality, the ground truths of some 
fingerprints provided by NIST-4 fingerprint database contain 2 classes, i.e. the 
ground truths of f0008_10 include class T and L. As other researchers did in their 
experiments, we only use the first ground truth label to estimate the parameters of the 
classifier. However, in testing, we use all the ground truth labels and consider a test as 
correctly classified if the output of the system matches to one of the ground truths. 
The PCC is 93.2% and 91.2% for 4 and 5-class classifications respectively. The 
classes R, L, W, A and T are uniformly distributed in NIST-4. However, in nature, 
the frequencies of their occurrence are 31.7%, 33.8%, 27.9%, 3.7% and 2.9%, respec-
tively. From Table 2, we observe that most of the classification errors are related to 
classes A and T. Considering that A and T occur less frequently in nature, our ap-

                                                           
1 3.1%, 4.2%, 4.5% and 22.3% for R,L,W and A/T respectively. 



 

proach is expected to perform better in real world. Table 3 shows the results on NIST-
4 database reported by other researchers. Considering that we have not rejected any 
fingerprints from NIST-4, our result is one of the best. For the 5-class classification, 
our result has 1.6% advantage over the result shown in [12], although in [12] the 
reject rate is 1.8%. 

4   CONCLUSIONS 

In this paper, we proposed a learning algorithm for fingerprint classification based on 
GP. Our experimental results show that the primitive operators selected by us are 
effective and GP can find good composite operators, which are beyond humans’ 
imagination, to extract the feature vectors for fingerprint classification. The experi-
mental results on NIST-4 fingerprint database show that our approach is one of the 
best approaches. Without rejecting any fingerprints, the experimental results show 
that our approach is promising and has advantages over the best results reported in 
the literatures. 
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