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Abstract. Both the human motion characteristics and body part mea-
surement are important cues for human recognition at a distance. The
former can be viewed as kinematic measurement while the latter is sta-
tionary measurement. In this paper, we propose a kinematic-based ap-
proach to extract both kinematic and stationary features for human
recognition. The proposed approach first estimates 3D human walking
parameters by fitting the 3D kinematic model to the 2D silhouette ex-
tracted from a monocular image sequence. Kinematic and stationary
features are then extracted from the kinematic and stationary parame-
ters, respectively, and used for human recognition separately. Next, we
discuss different strategies for combining kinematic and stationary fea-
tures to make a decision. Experimental results show a comparison of
these combination strategies and demonstrate the improvement in per-
formance for human recognition.

1 Introduction

In many applications of personnel identification, established biometrics, such as
fingerprints, face or iris, may be obscured. Gait, which concerns recognizing in-
dividuals by the way they walk, can be used as a biometric to recognize people
under these situations. However, most existing gait recognition approaches [1-4]
only consider human walking frontoparallel to the image plane. In this paper, we
propose a kinematic-based approach to recognize human by gait which relaxes
this condition. The proposed approach estimates 3D human walking parameters
by fitting the 3D kinematic model to the 2D silhouette extracted from a monocu-
lar image sequence. Since both the human motion characteristics and body part
measurement, are important cues for human recognition at a distance, kinematic
and stationary features are extracted from the estimated parameters, and used
for human recognition separately. Moreover, we combine the classifiers based on
stationary and kinematic features to increase the accuracy of human recognition.
Experimental results show a comparison of different combination strategies and
demonstrate the improvement in performance for human recognition.

2 Technical Approach

In our approach, we first build a 3D human kinematic model for regular human
walking. The model parameters are then estimated by fitting the 3D human
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Fig. 1. Diagram of the proposed approach for human gait analysis.

kinematic model to the extracted 2D human silhouette. Finally, stationary and
kinematic parameters are extracted from these parameters for human recogni-
tion. The realization of our proposed approach is shown in Figure 1.

2.1 Human Kinematic Model

A human body is considered as an articulated object, consisting of a number of
body parts. The body model adopted here is shown in Figure 2(a), where a circle
represents a joint and a rectangle represent a body part (N: neck, S: shoulder, E:
elbow, W: waist, H: hip, K: knee, and A: ankle). Most joints and body part ends
can be represented as spheres, and most body parts can be represented as cones.
The whole human kinematic model is represented as a set of cones connected
by spheres [5]. Figure 2(b) shows that body parts can be approximated well in
this manner, however, the head is approximated only crudely by a sphere and
the torso is approximated by a cylinder with two spheroid ends.

Matching between 3D Model and 2D Silhouette: The matching procedure
determines a parameter vector X so that the proposed 3D model fits the given
2D silhouette as well as possible. Each 3D human body part is modeled by a cone
with two spheres s; and s; at its ends, as shown in Figure 2(b) [5]. Each sphere
s; is fully defined by 4 scalar values, (x;,y;, 2i,7;), which define its location and
size. Given these values for two spheroid ends (z;,y;, 2;,7;) and (z;,y;,2;,7;) of
a 3D human body part model, its projection F;;) onto the image plane is the
convex hull of the two circles defined by (7, y;, ;) and (z},y},77})-

If the 2D human silhouette is known, we may find the relative 3D body
parts locations and orientations with prior knowledge of camera parameters.
We propose a method to perform a least squares fit of the 3D human model
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Fig. 2. (a) 3D Human Kinematic Model; (b) Body part geometric representation.

to the 2D human silhouette. That is, to estimate the set of sphere parameters
X ={X; : (z,vi,2i,7i)} by choosing X to minimize

error(X;1) = Y (Px(a,y') —I(2',y"))’, (1)
z'y' el
where [ is the silhouette binary image, Py is the binary projection of the 3D
human model to image plane, and z’, y' are image plane coordinates.

Model Parameter Selection: Human motion is very complex due to so many
degrees of freedom (DOFs). To simplify the parameter estimation procedure,
we use the following reasonable assumptions: (1) the camera is stationary; (2)
people are walking before the camera at a distance; (3) people are moving in a
constant direction; (4) the swing direction of arms and legs parallels to the mov-
ing direction. According to these assumptions, we do not need to consider the
waist joint, and only need to consider one DOF for each other joint. Therefore,
the elements of the parameter vector X of the 3D human kinematic model are
defined as: (a) Radius r;(11): torso(3), shoulder, elbow, hand, hip, knee, ankle,
toe, and head; Length [;(9): torso, inter-shoulder, inter-hip, upper arm, forearm,
thigh, calf, foot, and neck; (b) Location (z,y)(2); Angle 6;(11): neck, left up-
per arm, left forearm, right upper arm, right forearm, left thigh, left calf, left
foot, right thigh, right calf, and right foot. With 33 stationary and kinematic
parameters, the projection of the human model can be completely determined.

2.2 Model Parameter Estimation

Assuming that people are the only moving objects in the scene, their silhouette
can be extracted by a simple background subtraction method [7]. After the
silhouette has been cleaned by a pre-processing procedure, its height, width and
centroid are easily extracted for motion analysis. The human moving direction
is estimated through the silhouette width variation in the video sequence [7].
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Fig. 3. Human silhouette width variation in a video sequence (Circles represent frames
selected as key frames for stationary parameter estimation).

Stationary Parameter Estimation: The stationary parameters include body
part length and joint radius. Human walking is a cyclic motion, so a video
sequence can be divided into motion cycles and studied separately. The walking
cycle can be detected by exploiting the silhouette width variation in a sequence
as shown in Figure 3. In each walking cycle, the silhouette with minimum width
means the most occlusion; the silhouette with maximum width means the least
occlusion and is more reliable for model parameter estimation.

To estimate the stationary parameters, we first select 4 key frames (see Figure
3) from one walking cycle, and then perform matching procedure on these frames
as a whole because the human silhouette from a single frame might not be
reliable due to noise. The corresponding feature vector thus includes 20 common
stationary parameters and 13*4 individual kinematic parameters. Then, the set
of parameters is estimated from these initial parameters by choosing a parameter
vector X' to minimize the least square error in equation (1) with respect to
the same kinematic constraints. The parameters are initialized according to the
human statistical information. After the matching algorithm is converged, the
estimated stationary parameters are obtained.

Kinematic Parameter Estimation: To reduce the search space and make
our matching algorithm converge faster, we use the linear prediction of param-
eters from the previous frames as the initialization of the current frame. After
the matching algorithm is converged, the estimated kinematic parameters are
obtained for each frame.

2.3 Kinematic and Stationary Feature Classifiers

In our approach, kinematic features are the mean and standard deviation val-
ues extracted from the kinematic parameters of each frame in the whole image
sequence containing one human walking cycle. Assuming that human walking is
symmetric, that is, the motion of the left body part is the same as or similar to
the right body parts, the kinematic feature vector xy selected for human recog-



nition includes 10 elements: the mean and standard deviation of angles of neck,
upper arm, forearm, thigh, and leg.

Stationary features are directly selected from the estimated stationary pa-
rameters of each sequence containing human walking. Among those model sta-
tionary parameters, joint radius depends on human clothing, and inter-shoulder
and inter-hip length is hardly estimated due to the camera view (human walking
within small angle along the frontparallel direction). Assuming the body part
length is symmetric for left and right body parts, the stationary feature vector
X5 selected for human recognition includes 7 elements: neck length, torso length,
upper arm length, forearm length, thigh length, calf length, and foot length.

After the kinematic and stationary features are extracted, they are used to
classify different people separately. For simplicity, we assuming the feature vector
x (x could be xg or xi) for a person w; is normally distributed in the feature
space, and each of the independent features have Gaussian distribution with
the same standard deviation value. Under this assumption, minimum distance
classifier is established: x is assigned to the class whose mean vector has the
smallest Euclidean distance with respect to x.

2.4 Classifier Combination Strategies

To increase the efficiency and accuracy of human recognition, we need to com-
bine the two classifiers in some way. Kittler et al. [8] demonstrate that the com-
monly used classifier combination schemes can be derived from a uniform Baysian
framework under different assumptions and using different approximations. We
use these derived strategies to combine the two classifiers in our experiments.

In our human recognition problem with M people in the database, two clas-
sifiers with feature vector xg and X, respectively, are combined to make a deci-
sion on assigning each sample to one of the M people (wi, ...,wpr). The feature
space distribution of each class w; is modeled by the probability density func-
tion p(xs|w;) and p(xk|w;), and its a priori probability of occurrence is P(w;).
Under the assumption of equal priors, the classifier combination strategies are
described as follows:

— Product rule
{xs, X1} € wi, if p(xs|wi)p(xaclwi) = maxpl | p(xs|wi ) p(xac|wr)

— Sum rule

{xs, Xk} € wj, if p(xs|w;i) + p(xk|w;) = max} | (p(xs|wr) + p(xK|wr))
— Max rule

{xs, XK} € w;, if max{p(xs|w;), p(xk|wi)} = makazlmaX{p(xs|wk),p(xk|wk)}
— Min rule

{Xs, Xk} € w;, if min{p(xs|w;), p(xk|wi)} = maxi}ilmin{p(xswk),p(xk|wk)}

In our application, the estimate of a posteriori probability is computed as
follows:

exp{—|x — pi|*}
Pwilx) = = —, 2)
2 k=1 exp{—l[x — pucl[*}
where x is the input of the classifier, and p; is the ith class center.



Fig. 4. Sample human walking sequences in our database.

3 Experimental Results

The video data used in our experiment are real human walking data recorded
in outdoor environment. Eight different people walk within [-45°,45°] with re-
spect to frontparallel direction. We manually divide video data into single-cycle
sequences with an average of 16 frames. In each sequence, only one person walks
along the same direction. There are a total of 110 single-cycle sequences in our
database, and the number of sequences per person ranges from 11 to 16. The
image size is 180 x 240.Figure 4 shows some sample sequences in our database.

We use Genetic algorithm for model parameter estimation. Each of the ex-
tracted kinematic and stationary features is normalized by %, where z is the
specific feature value, y and o are the mean and standard deviation of the spe-
cific feature over the entire database. Recognition results in our experiments are
obtained using Leave-One-Out method.

Feature Size Stationary Features Recognition Rate
1 neck 31%
2 neck, torso 32%
3 neck, torso, upper arm 45%
4 neck, torso, upper arm, forearm 50%
5 neck, torso, upper arm, forearm, thigh 55%
6 neck, torso, upper arm, forearm, thigh, calf 59%
7 neck, torso, upper arm, forearm, thigh, calf, foot 62%

Table 1. Comparison of performance using different number of stationary features.

Performance of Stationary Feature Classifier: The recognition rate with
all the 7 stationary features is 62%. Table 1 shows the human recognition perfor-
mance using different number of stationary features. From this table, we can see
that the recognition rate increases when feature number increases. Therefore,
each of these features has its own contribution to the overall recognition per-
formance using stationary features. On the other hand, the contribution varies
among different features. For example, adding torso length into the feature vec-
tor with neck length makes 1% improvement, while adding upper arm length
into the feature vector with torso and neck length makes 13% improvement. As
a result, better recognition performance might be achieved by using weighted



Euclidean distance instead of regular Euclidean distance. This requires a train-
ing procedure. However, due to the high feature space dimension (7) and small
class number (8) in the database, overfitting becomes a big problem under this
situation, i.e., training results achieve high recognition rate on training data and
low recognition rate on testing data. Therefore, we do not carry out weight train-
ing in this paper. We expect such a procedure to be carried out when a large
database with a large number of classes (people) becomes available.

Feature Size Kinematic Features Recognition Rate
5 Mean 50%
5 Standard Deviation 49%
10 Mean and Standard Deviation 72%

Table 2. Comparison of performance using mean and standard deviation features
computed from each body part angle variation sequences over a single-cycle sequence.

Feature Size Kinematic Features Recognition Rate
2 neck 34%
4 neck, upper arm 51%
6 neck, upper arm, forearm 57%
8 neck, upper arm, forearm, thigh 63%
10 neck, upper arm, forearm, thigh, leg 72%

Table 3. Comparison of performance using different number of kinematic features.

Performance of Kinematic Feature Classifier: The recognition rate with
all the 10 kinematic features is 72%. In Table 2, it is shown that the mean and
standard deviation features computed from each body part angle variation se-
quences over a single-cycle sequence achieve similar recognition rate, 50% and
49%, respectively. Table 3 shows the human recognition performance using differ-
ent number of kinematic features. Similar to stationary features, the recognition
rate increases when feature number increases. We also expect a weight training
procedure carried out on a large human walking database in the future.

Combination Rule|Recognition Rate
Product Rule 83%
Sum Rule 80%
Max Rule 73%
Min Rule 5%

Table 4. Comparison of performance using different combination strategies.

Performance with Classifier Combination: Table 4 shows the human recog-
nition performance on classifier combination with different strategies. Consider-
ing the recognition rate on stationary and kinematic classifiers are 62% and
72%, respectively, all the four rules achieve better recognition performance on
human recognition. Among the combination strategies, product rule achieves the
best recognition rate of 83%. Sum rule also achieves a better recognition rate
of 80%. The recognition rates achieved by max and min rules are only slightly
better than that of kinematic classifier (72%). Sum rule has been mathemati-
cally proved to be robust to errors by Kittler et al. [8]. We believe that the main
reason for the good performance achieved by product rule is the holding of the



conditional independence assumption (the features used in different classifiers
are conditionally statistically independent) in product rule for our application.
The poor performance of max and min rules may come from their order statistics
and sequential sensitivity to noise. Similar results are found in Shakhnarovich
and Darrell’s work on combining face and gait features [9].

4 Conclusions

In this paper, we propose a kinematic-based approach for human recognition.
The proposed approach estimates 3D human walking parameters by fitting the
kinematic model to the 2D silhouette extracted from a monocular image se-
quence. The kinematic and stationary features are extracted from the estimated
parameters, and used for human recognition separately. Next, we use differ-
ent strategies to combine the two classifiers to increase the accuracy of human
recognition. Experimental results show that our proposed approach achieves the
highest 83% recognition rate by using product rule on combining classifiers of sta-
tionary features and kinematic features. Note that this performance is achieved
under the situation of people walking from —45° to 45° with respect to the
frontparallel direction, and the low resolution of human walking sequences. With
higher resolution human walking sequences and a weight training procedure for
weighted Euclidean distance, we expect a better recognition performance in our
future work.
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