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Abstract 
The task of a content-based image retrieval (CBIR) 
system is to cater to users who ezpect to get rele- 
vant images with high precision and eficiency in re- 
sponse to query images. This paper presents a concept 
learning approach that integrates a mixture model of 
the data, relevance feedback and long-term continuous 
learning. The concepts are incrementally refined with 
increased retrieval ezperiences. The concept knowl- 
edge can be immediately tmnsplanted to deal with the 
dynamic database situations such as  insertion of new 
images, removal of ensting images and query images 
which are outside the database. Experimental results 
on Core1 database show the eficacy of our approach. 

1 Introduction 
Meta knowledge in image/video databases can be used 
to learn and refine visual concepts ([l] [Z]). However, 
this process necessitates a model for the learning pro- 
cess. Vasconcelos 131 analyzed the probabilistic im- 
age retrieval model based on mixture densities for the 
quality of the solution and computational complexity. 
However, neither relevance feedback nor the exploita- 
tion of meta knowledge is considered for the model. 
Barnard and Forsyth 141 organized images (with as- 
sociated words) by a hierarchical model for browsing 
and searching. In [4], some images are used to train 
the clustering directly; this training stage is unreliable 
since the training data set may not represent the im- 
age distribution of the entire database, especially when 
some images are added or removed during the database 
lifetime. 

The model estimation by the standard EM method 
[5] may be far away from ground-truth model due to  
the gap between numeric-oriented feature data and con- 
cepts understood by humans. Recently, some papers 
on semi-supervised learning based on mixture mod- 
els have been published 161 [7]. These approaches as- 
sume that  the labeled data belong to some specified 
classes. In reality, another kind of labeling information 
that  “some data do NOT belong to  some classes” is 
also available with relevance feedback, and it may im- 
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Figure 1: System diagram for concept learning and 
transplantation for dynamic image databases. 

prove the effectiveness of the semi-supervised learning. 
In [8], a new semi-supervised EM (SS-EM) algorithm 
is proposed that  integrates concept learning and rele- 
vance feedback. However, the database is assumed to 
be fixed, and the query images are always from the 
database itself. 

Fig. 1 illustrates our system for concept learning and 
transplantation. The contributions of this paper are: 
(a) Unlike most of the research in content-based image 
retrieval field, in our system, images can be inserted to  
or removed from the database, and the concept learn- 
ing knowledge can be immediately transplanted to  the 
new images. We model the dynamic mechanism of im- 
age databases, and learn concepts based on the SS-EM 
algorithm [SI. (b) When the query image does not be- 
long to  the database, the system can still efficiently 
search images using concept knowledge instead of im- 
plementing the traditional K nearest neighbor (K-NN) 
search. The approaches of [l] and [2] are incapable of 
dealing with this situation. 

2 Technical approach 
D y n a m i c  database model: An image retrieval sys- 

tem with relevance feedback mechanism may encounter 
two kinds of events at any time during the long-term 
operation: (a) users’ queries and (b) database changes 
(i.e., image insertion or removal). We model the occur- 
rences of these two events as Pozsson random processes, 
whose distributions are P[N(t) = k] = @ $ k A c t  (k = 
0,1 , .  . .) with i = 1 (query) and 2 (insertion/deletion), 
respectively . The ratio of the two distribution param- 
eters r = 2 specifies the relative occurrence rate of 
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these two events. 
Since different users make a variety of queries and 

perceive visual content differently, they may provide 
different sets of positive and negative labeling informa- 
tion, each of which is defined as a retrieval experience 
E = {Xt, X-}, where Xt = {Z:,Z$, . . . ,xi+} are 
labeled as belonging to  (positive for) a certain hut un- 
known component (concept) while another portion of 
samples X -  = {z;,z;, . . . ,z;-} are labeled as NOT 
belonging to (negative for) that unknown component 
(concept). Note that z,’ (i = 1,2 , .  . . , Nt) and x; 
(3 = 1,2, .  . . , N-) are image visual feature vectors. We 
assume that query images in different query sessions are 
all from the image database with equal probability of 
being selected. With more users’ executions of their 
queries, the estimation of the mixture model for the 
database Corresponding to the human concepts may he 
continually refined over time, hence the concept learn- 
ing is improved in the long term. 

Concep t  learning: We assume that the database 
image distribution in feature space is a c-component 
Gaussian mixture C = {CJ, . . . , C c } ,  whose pdf is 

where z is d-dimensionar#eature, f<(x) are component 
densities and ~i (i = 1,2, .  . . , c) are component propor- 
tions ( 0 5 li, 5 1 and E:==, ?T< = 1 ). The component 
densities are specified by means pi and covariances C,. 
Q = u : = , { l i , , p < , X i } .  For our image database sys- 
tem with N images, there are c concepts each of which 
is corresponding to one component. The task of con- 
cept learning is accomplished by estimating the mixture 
model parameters 3. 

For a set of N i.i.d. samples X = { x l ,  
2 2 ,  ..., Z N }  from the model (l), define the 
associated binary component-indicator vectors for 

1 
0 otherwise 

if xj  is from ith component , for j = 

1,2, .  . . , N, i = 1,2, .  . . ,c. The muximum likelihood 
(ML) estimate of the unknown parameter vectors can 
be obtained by the EM approach, which produces a 
sequence of estimates {$ ( t ) ,  t = 0,1,2, .  . .} by pro- 
ceeding iteratively in two steps (Es t ep  and M-step) 
until some termination criterion is met: In E-step, 
The conditional. expectation of 2 defined as r j i  = 
prob+i(t){zji = llX} is derived as. 

(2) 
T . .  - . i f , ( x j ; s i )  

3% - 
r h f h ( z j , ; e ^ h )  

In M-step, the component proportions, means and co- 
variances can he estimated [5]. 

In order to  capture and accumulate previous users’ 
retrieval experiences in the long-term history, we des- 
ignate a positive matrix PN,, and a negative ma- 
triz Q N ~ ~  to  represent this kind of knowledge. P 

are Q are initialized to  he zero matrices at the be- 
ginning. After each retrieval experience, the’ el- 
ements {p,:,,,... p .+ , h }  in P and the elements 

{ q j ; , h , ’ .  . , q 3 , _ , , }  in Q are increased by 1. The clus- 
ter index h is estimated as 

’ 3N+ 

h = arg i=1,2,--..e max P(i)  (3) 
where P( i )  is equal to  

for the samples in X+ and X- respectively. Due to  the 
knowledge accumulation mechanism of matrices P and 
Q, the learning improvement of the system is guaran- 
teed even though it is possible that the concepts being 
sought are occasionally misidentified by (3). 

With the accumulated knowledge contained in P and 
Q, the component-indicator vector elements rji derived 
in (2) can he modified as 

if p j ,  = qj i  
for j = 1 , 2 , .  . . , N and i = 1,2, .  . . , e .  Then we nor- 
malize these modified component-indicator vectors so 
that Cf=liji = 1. This means that,  based on nu- 
meric feature data, the component-indicator estimation 
is modified with labeling knowledge derived from users’ 
retrieval experience. This modification step can be iu- 
serted between E-step and M-step so that concept the 
learning result is closer to human’s understanding. 
a Improving retr ieval  performance: The concept 
learning result can help to improve retrieval perfor- 
mance. When a query is presented t o  the system, for 
the initial K nearest neighbor (K-NN) search, the Eu- 
clidean distance in the feature space from one database 
image z, ( j  = 1,2, .  . . , N) to the query 3:, is defined as 
D ( z , , x j ) ,  which we modify as 

i = l  
where N is the database size and n is the number of 
retrieval experiences. The second term on the right 
side is for concept learning knowledge, which is given 
more credit as the concept learning is improved with 
the retrieval experiences increased. The parameter 0 is 
to make balance between these two terms. 
a Concep t  t ransplantat ion:  When a new image is 
inserted, since the database size N is increased by 1, the 
positive matrix PN,, and the negative matrix Q N ~ ~  
are both modified with one additional row, whose el- 
ements are all zeros. Furthermore, the component- 
indicator estimation of this new image can he computed 
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Given the data X ,  the number of clusters c, the num- 
ber of images N .  Initialize positive matrix P N ~ ~  and 
negative matrix to he zero matrices. 
Implement standard EM algorithm on X .  

a Repeat 
(a) When new user executes retrieval: (Learning) 

1. Derive a retrieval experience, update P and Q. 
2. E-step: Estimate Z by (2). 

3. Use P and Q to modify 2 estimation by (4). 

4. M-step: Compute component proportions, 
means and covariances respectively. 

5 .  Go to 2 until termination criterion is met 

(b) When images are inserted: (Transplantation) 
1.  N - N + 1, update P and Q. 
2. Estimate ZN by (2) for new images 

Figure 2: Concept learning and transplantation. 

by (2) with j = N + 1 and component proportions, 
means and covariances being already known. In this 
way, the datahase absorbs the new image with concept 
knowledge transplantation. When some images are re- 
moved from the database, the corresponding rows in 
the matrices and Q N ~ ~  are deleted. The rela- 
tionship between the occurrence rates of user query and 
database changes influences t,he speed of concept learn- 
ing. Obviously, when database changes occur more fre- 
quently compared with the event of user query, i.e., 
when the value of relative occurrence rate T is lower, 
the concept learning becomes slower. 

If the query image does not belong to the datahase, 
the system extracts its visual features, computes rqI 
(i = 1 , 2 , .  . . , c) by (Z), and implements K-NN search 
using the distance measurement given in (5). Com- 
pared with the traditional K-NN search that is solely 
based on visual feature Euclidean distance measure- 
ment, this approach yields better retrieval performance 
since concept knowledge is adopted. 

The concept learning and transplantation algorithm 
is presented in Fig. 2. EM-algorithm for mixture model 
estimation is computationally intense. To avoid that 
clustering lags behind retrieval experience derivation 
in the system, we implement user directed SS-EM al- 
gorithm after every s (s 2 1) retrieval experiences. 

3 Experiments 
We collect 1200 images from Core1 stock photo library 
and divide them into 12 classes. Images are represented 
by 22 texture and color features 181. To validate the 
clustering result R = {RI,. . . , R,} from an algorithm, 
we compare R with the ground-truth mixture model 

(a) concept learning (h) retrieval precision 

Figure 3: Performances with different values of T 
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(a) T = 16 (b) r = 2 

Figure 4: Retrieval performance at various times. 

C = {Cl, .  . . , C,} by using a statistical index. A pair 
of vectors { z i , x j }  are referred to  as (I) BS if both 
vectors belong to  the same component in C and to  the 
same cluster in R, (11) S D  if both vectors belong to  
the same component'in C and to  different clusters in R: 
(111) DS if both vectors belong to  different components 
in C and to  the same cluster in R. Let (1, (2 and he 
the number of B S ,  S D  and DS pairs of vectors of X ,  
respectively. We use Jaccard coeficient JC = & 
to  evaluate clustering result. 

We randomly select 800 out of the 1200 images as 
the initial database images, i.e., N = 800, and insert 
the other 400 images while the system is running. Our 
concept learning approach on the database is imple- 
mented with c = 12, s = 50 and p = 100. We set the 
system running time as t = 0,1,2, .  . .; at each t ,  one 
of the events happens: user query or image insertion. 
Queries within the database and images to  he inserted 
are randomly selected. Fig. 3(a) shows the concept 
learning improvement. Initially, the Jaccard coefficient 
by standard EM algorithm is 45.6%. If there are only 
image insertions in the random process, i.e., r = 0, the 
concept learning cannot he improved. When the users' 
queries happen more frequently (T  is higher), the con- 
cept learning will be faster. Note that when T = 0 and 
T = 2, after all the 400 images are inserted into the 
system, t is around 400 and (400 + 2 * 400) = 1200 
respectively, and it cannot reach t = 2000. After an 
image is inserted, we use the rest of the images outside 
the database as queries and implement concept trans- 
plantation method to  compute the retrieval precision 
(at relevance feedback iteration 0) by (5) . As shown 
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(a) no retrieval experience ( t  = 0): precision = & 

(b) t = 300 precision = 9 
Figure 5: Retrieval precision is improved with retrieval 
experiences increased. 
in Fig. 3(b), the precision increases with more images 
being inserted to  the system due to the reason that 
concept learning is improved since more retrieval ex- 
periences are derived. Note that another factor that 
improves the precision is that with more images being 
inserted, there are more relevant images within each 
class; thus, the probability that relevant images with 
regard to the query image can be found increases. This 
also explains that when T = 0, the precision still be- 
comes a slightly higher with more images being inserted 
although concept learning is not improved. Since we 
only observe the process with t being from 0 to 2000, 
when T = 16, only around 2000/(1+ 16) = 117 images 
have been inserted, This is reason that the curve for 
r = 16 cannot reach 400 in z-axis. 

Fig. 4 presents the retrieval performance improve- 

ment with increased running time for r = 16 and T = 2. 
We select an image in this database as the query, imple- 
ment our retrieval strategy, and repeat this experiment 
by changing query until each of the database images 
has been selected as query. Then we calculate the av- 
erage precision at each iteration. With increased re- 
trieval experiences, the average precision is improved, 
especially at initial K-NN search iteration. This has 
deep significance for retrieval performance in practical 
applications since users usually don't have enough pa- 
tience to repeat relevance feedback iterations to search 
the images. Fig. 5 shows two different retrieval results 
with the same query image (outside the database) af- 
ter different running time. In (a), there is no retrieval 
experience, and K-NN search only yields 11 out of 20 
sunset images (row 1 :  all the 5 images; row 2: 1, 2, 4; 
row 3: 5; row 4: 1 and 5); In (b), when t = 300, 19 
sunset images are presented (except the 3rd image on 
the last row) by our concept transplantation approach. 

4 Conclusions 
This paper proposed a new concept learning approach 
where the learned concept knowledge can be trans- 
planted to new incoming images o r ' t o  query iniages 
outside the database efficiently. 
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