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Abstract. In this paper, a novel genetically-inspired visual learning method is 
proposed. Given the training images, this general approach induces a 
sophisticated feature-based recognition system, by using cooperative 
coevolution and linear genetic programming for the procedural representation 
of feature extraction agents. The paper describes the learning algorithm and 
provides a firm rationale for its design. An extensive experimental evaluation, 
on the demanding real-world task of object recognition in synthetic aperture 
radar (SAR) imagery, shows the competitiveness of the proposed approach with 
human-designed recognition systems. 

1   Introduction  

Most real-world learning tasks concerning visual information processing are 
inherently complex. This complexity results not only from the large volume of data 
that one usually needs to process, but also from its spatial nature, information 
incompleteness, and, most of all, from the vast number of hypotheses that have to be 
considered in the learning process and the ‘ruggedness’ of the fitness landscape. 
Therefore, the design of a visual learning algorithm mostly consists in modeling its 
capabilities so that it is effective in solving the problem. To induce useful hypotheses 
on one hand and avoid overfitting to the training data on the other, some assumptions 
have to be made, concerning training data and hypothesis representation, known as 
inductive bias and representation bias, respectively. In visual learning, these biases 
have to be augmented by an extra ‘visual bias’, i.e., knowledge related to the visual 
nature of the information being subject to the learning process. A part of that is 
general knowledge concerning vision (background knowledge, BK), for instance, 
basic concepts like pixel proximity, edges, regions, primitive features, etc. However, 
usually a more specific domain knowledge (DK) related to a particular 
task/application (e.g., fingerprint identification, face recognition, etc.) is also 
required.   

Currently, most recognition methods make intense use of DK to attain a 
competitive performance level. This is, however, a double-edged sword, as the more 
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DK the method uses, the more specific it becomes and the less general and 
transferable is the knowledge it acquires. The contribution of such over-specific 
methods to the overall body of knowledge is questionable.  

Therefore, in this paper, we propose a general-purpose visual learning method that 
requires only BK and produces a complete recognition system that is able to classify 
objects in images. To cope with the complexity of the recognition task, we break it 
down into components. However, the ability to identify building blocks is a 
necessary, but not a sufficient, precondition for a successful learning task. To enforce 
learning in each identified component, we need an evaluation function that spans over 
the space of all potential solutions and guides the learning process. Unfortunately, 
when no a priori definition of module’s ‘desired output’ is available, this requirement 
is hard to meet. This is why we propose to employ here cooperative coevolution [10], 
as it does not require the explicit specification of objectives for each component.  

2   Related Work and Contributions  

No general methodology has been developed so far that effectively automates the 
visual learning process. Several methods have been reported in the literature; they 
include blackboard architecture, case-based reasoning, reinforcement learning, and 
automatic acquisition of models, to mention the most predominant. The paradigm of 
evolutionary computation (EC) has also found applications in image processing and 
analysis. It has been found effective for its ability to perform global parallel search in 
high-dimensional search spaces and to resist the local optima problem. However, in 
most approaches the learning is limited to parameter optimization. Relatively few 
results have been reported [5,8,13,14], that perform visual learning in the deep sense, 
i.e., with a learner being able to synthesize and manipulate an entire recognition 
system. 

The major contribution of this paper is a general method that, given only a set of 
training images, performs visual learning and yields a complete feature-based 
recognition system. Its novelty consists mostly in (i) procedural representation of 
features for recognition, (ii) utilization of coevolutionary computation for induction of 
image representation, and (iii) a learning process that optimizes the image feature 
definitions, prior to classifier induction. 

3   Coevolutionary Construction of Feature Extraction Procedures 

We pose visual learning as the search of the space of image representations (sets of 
features). For this purpose, we propose to use cooperative coevolution (CC) [10], 
which, besides being appealing from the theoretical viewpoint, has been reported to 
yield interesting results in some experiments [15]. In CC, one maintains many 
populations, with individuals in populations encoding only a part of the solution to 
the problem. To undergo evaluation, individuals have to be (temporarily) combined 
with individuals from the remaining populations to form an organism (solution). This 
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joint evaluation scheme forces the populations to cooperate. Except for this evaluation 
step, other steps of evolutionary algorithm proceed in each population independently.  

According to Wolpert’s ‘No Free Lunch’ theorem [17], the choice of this particular 
search method is irrelevant, as the average performance of any metaheuristic search 
over a set of all possible fitness functions is the same. In the real world, however, not 
all fitness functions are equally probable. Most real-world problems are characterized 
by some features that make them specific. The practical utility of a search/learning 
algorithm depends, therefore, on its ability to detect and benefit from those features.  

The high complexity and decomposable nature of the visual learning task are such 
features. Cooperative coevolution seems to fit them well, as it provides the possibility 
of breaking up a complex problem into components without specifying explicitly the 
objectives for them. The manner in which the individuals from populations cooperate 
emerges as the evolution proceeds. In our opinion, this makes CC especially 
appealing to the problem of visual learning, where the overall object recognition task 
is well defined, but there is no a priori knowledge about what should be expected at 
intermediate stages of processing, or such knowledge requires an extra effort from the 
designer.  

In [3], we provide experimental evidence for the superiority of CC-based feature 
construction over standard EC approach in the standard machine learning setting; 
here, we extend this idea to visual learning. Following the feature-based recognition 
paradigm, we split the object recognition process into two modules: feature extraction 
and decision making. The algorithm learns from a finite training set of examples 
(images) D in a supervised manner, i.e. requires D to be partitioned into finite number 
of pairwise disjoint decision classes Di.  

In the coevolutionary run, n populations cooperate in the task of building the 
complete image representation, with each population responsible for evolving one 
component. Therefore, the cooperation here may be characterized as taking place at 
the feature level. In particular, each individual I from a given population encodes a 
single feature extraction procedure. For clarity, details of this encoding are provided 
in Section 4.  

 
Organism EvaluationPopulation

#1

Population 
#i

Population 
#n

Representative I1
*

Representative In
*

Basic image 
processing 
operations

Cross-validation 
experiment

… Fitness 
value 
f(O,D) 

Feature vectors Y(X)
for all training images X∈D

Training 
images D

LGP program
interpreter

Fast
classifier Cfit

…

Representative I1
*

Predictive
accuracy

Organism O

Individual Ii

 
Fig. 1. The evaluation of an individual Ii from ith population. 
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The coevolutionary search proceeds in all populations independently, except for 
the evaluation phase, shown in Fig. 1. To evaluate an individual Ij from population #j, 
we first provide for the remaining part of the representation. For this purpose, 
representatives  are selected from all the remaining populations i≠j. A 
representative  of i

*
iI

*
iI th population is defined here in a way that has been reported to 

work best [15]: it is the best individual w.r.t. the previous evaluation. In the first 
generation of evolutionary run, since no prior evaluation data is given, it is a 
randomly chosen individual. 

Subsequently, Ij is temporarily combined with representatives of all the remaining 
populations to form an organism 

**
1

*
1

*
1 ,,,,,, njjj IIIIIO KK +−= . (1) 

Then, the feature extraction procedures encoded by individuals from O are ‘run’ (see 
Section 4) for all images X from the training set D. The feature values y computed by 
them are concatenated, building the compound feature vector Y:  

),(,),,(),,(),,(,),,()( **
1

*
1

*
1 XIXIXIXIXIX njjj yyyyyY KK +−= . (2) 

Feature vectors Y(X), computed for all training images X∈D, together with the 
images’ decision class labels constitute the dataset:  

},:),({ ii DDXiX ∀∈∀Y  (3) 

Finally, cross-validation, i.e. multiple train-and-test procedure is carried out on these 
data. For the sake of speed, we use here a fast classifier Cfit that is usually much 
simpler than the classifier used in the final recognition system. The resulting 
predictive recognition ratio (see equation 4) becomes the evaluation of the organism 
O, which is subsequently assigned as the fitness value to f ( ) the individual Ij, 
concluding its evaluation process: 
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where card() denotes cardinality of a set. Using this evaluation procedure, the 
coevolutionary search proceeds until some stopping criterion (usually considering 
computation time) is met. The final outcome of the coevolutionary run is the best 
found organism/representation O*.  

4   Representation of Feature Extraction Procedures 

For representing the feature extraction procedures as individuals in the evolutionary 
process, we adopt a variety of Linear Genetic Programming (LGP) [1], a hybrid of 
genetic algorithms (GA) and genetic programming (GP). The individual’s genome is 
a fixed-length string of bytes, representing a sequential program composed of 
(possibly parameterized) basic operations that work on images and scalar data. This 
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representation combines advantages of both GP and GA, being both procedural and 
more resistant to the destructive effect of crossover that may occur in ‘regular’ GP 
[1]. 

A feature extraction procedure accepts an image X as input and yields a vector y of 
scalar values as the result. Its operations are effectively calls to image processing and 
feature extraction functions. They work on registers, and may use them for both input 
as well as output arguments. Image registers store processed images, whereas real-
number registers keep intermediate scalar results features. Each image register has 
single channel (grayscale), the same dimensions as the input image X, and maintains a 
rectangular mask that, when used by an operation, limits the processing to its area. 
For simplicity, the numbers of both types of registers are controlled by the same 
parameter m.  

Each chunk of four consecutive bytes in the genome encodes a single operation 
with the following components:  

(a)  operation code, 
(b)  mask flag – decides whether the operation should be global (work on the entire 

image) or local (limited to the mask), 
(c)  mask dimensions (ignored if the mask flag is ‘off’), 
(d)  arguments: references to registers to fetch input data and store the result. 
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Fig. 2. Execution of LGP code  contained in individual’s I genome (for a single image X). 

Fig. 2 shows the execution at the moment of executing the following operation: 
morphological opening (a), applied locally (b) to the mask of size 14×14 (c) to the 
image fetched from image register pointed by argument #1, and storing the result in 
image register pointed by argument #2 (d). There are currently 70 operations 
implemented in the system. They mostly consist of calls to functions from Intel Image 
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Processing and OpenCV libraries, and encompass image processing, mask-related 
operations, feature extraction, and arithmetic and logic operations. 

The processing of a single input image X ∈ D by the LGP procedure encoded in an 
individual I proceeds as follows (Fig. 2): 

1. Initialization: Each of the m image registers is set to X. The masks of images are 
set to the m most distinctive local features (here: bright ‘blobs’) found in the 
image. Real-number registers are set to the center coordinates of corresponding 
masks. 

2. Execution: the operations encoded by I are carried out one by one, with 
intermediate results stored in registers. 

3. Interpretation: the scalar values yj(I,X), j=1,…,m, contained in the m real-value 
registers are interpreted as the output yielded by I for image X.  The values are 
gathered to form an individual’s output vector  

),(,),,(),( 1 XIyXIyXI mK=y , (5) 

that is subject to further processing described in Section 3.  

5   Architecture of the Recognition System 

The overall recognition system consists of:  (i) the best feature extraction procedures 
O* constructed using the approach described in Sections 3 and 4, and (ii) classifiers 
trained using those features.  

We incorporate a multi-agent methodology that aims to compensate for the 
suboptimal character of representations elaborated by the evolutionary process and 
allows us to boost the overall performance.  
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Input
image

X

Recognition subsystem #1

Classifier
C

Synthesized 
representation O*

Y(X) C(Y(X))
Voting

Final
decision

…

 
Fig. 3. The top-level architecture of recognition system. 

The basic prerequisite for the agents’ fusion to become beneficial is their 
diversification. This may be ensured by using homogenous agents with different 
parameter settings, homogenous agents with different training data (e.g., bagging [4]), 
heterogeneous agents, etc. Here, the diversification is naturally provided by the 
random nature of the genetic search. In particular, we run many genetic searches that 
start from different initial states (initial populations). The best representation O* 
evolved in each run becomes a part of a single subsystem in the recognition system’s 
architecture (see Fig. 3). Each subsystem has two major components: (i) a 
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representation O*, and (ii) a classifier C trained using that representation. As this 
classifier training is done once per subsystem, a more sophisticated classifier C may 
be used here (as compared to the classifier Cfit used in the evaluation function).  

The subsystems process the input image X independently and output recognition 
decisions that are further aggregated by a simple majority voting procedure into the 
final decision. The subsystems are therefore homogenous as far as the structure is 
concerned; they only differ in the features extracted from the input image and the 
decisions made. The number of subsystems nsub is a parameter set by the designer. 

6   Experimental Results 

The primary objective of the computational experiment is to test the scalability of the 
approach with respect to the number of decision classes and its sensitivity to various 
types of object distortions. As an experimental testbed, we choose the demanding task 
of object recognition in synthetic aperture radar (SAR) images. There are several 
difficulties that make recognition in this modality extremely hard:  

• poor visibility of objects – usually only prominent scattering centers are visible, 
• low persistence of features under rotation, and 
• high levels of noise. 

The data source is the MSTAR public database [12] containing real images of several 
objects taken at different azimuths and at 1-foot spatial resolution. From the original 
complex (2-channel) SAR images, we extract the magnitude component and crop it to 
48×48 pixels. No other form of preprocessing is applied. 

 

ZSU 23/4

BRDM ZIL131

T72#A04
 

Fig. 4. Selected objects and their SAR images used in the learning experiment. 

The following parameter settings are used for each coevolutionary run: number of 
subsystems nsub: 10; classifier Cfit used for feature set evaluation: decision tree inducer 
C4.5 [11]; mutation operator: one-point, probability 0.1; crossover operator: one-
point, probability 1.0, cutting allowed at every point; selection operator: tournament 
selection with tournament pool size = 5; number of registers (image and 
numeric) m: 2; number of populations n: 4; genome length: 40 bytes (10 operations); 
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single population size: 200 individuals; time limit for evolutionary search: 4000 
seconds (Pentium PC 1.4 GHz processor).  

A compound classifier C is used to boost the recognition performance. In 
particular, C implements the ‘1-vs.-all’ scheme, i.e. it is composed of l base 
classifiers (where l is the number of decision classes), each of them working as a 
binary (two-class) discriminator between a single decision class and all the remaining 
classes. To aggregate their outputs, a simple decision rule is used that yields final 
class assignment only if the base classifiers are consistent and indicate a single 
decision class. With this strict rule, any inconsistency among the base classifiers (i.e., 
no class indicated or more than one class indicated) disables univocal decision and the 
example remains unclassified (assigned to ‘No decision’ category).  

The system’s performance is measured using different base classifiers (if not stated 
otherwise, the classifier uses default parameter settings as specified in [16]): 

• support vector machine with polynomial kernels of degree 3 (trained using 
sequential minimal optimization algorithm [9] with complexity parameter set 
to 10), 

• nonlinear neural networks with sigmoidal units trained using backpropagation 
algorithm with momentum, 

• C4.5 decision tree inducer [11]. 

Scalability. To investigate the scalability of the proposed approach w.r.t. to the 
problem size, we use several datasets with increasing numbers of decision classes for 
a 15-deg. depression angle, starting from l=2 decision classes: BRDM2 and ZSU. 
Consecutive problems are created by adding the decision classes up to l=8 in the 
following order: T62, Zil131, a variant A04 of T72 (T72#A04 in short), 2S1, 
BMP2#9563, and BTR70#C71.   

For ith decision class, its representation Di in the training data D consists of two 
subsets of images sampled uniformly from the original MSTAR database with respect 
to a 6-degree azimuth step. Training set D, therefore, always contains 2*(360/6)=120 
images from each decision class, so its total size is 120*l. The corresponding test set 
T contains all the remaining images (for a given object and elevation angle) from the 
original MSTAR collection. In this way, the training and test sets are strictly disjoint. 
Moreover, the learning task is well represented by the training set as far as the 
azimuth is concerned. Therefore, there is no need for multiple train-and-test 
procedures here and the results presented in the following all use this single particular 
partitioning of MSTAR data.  

Let nc, ne, and nu, denote respectively the numbers of test objects correctly 
classified, erroneously classified, and unclassified by the recognition system. 
Figure 5(a) presents the true positive rate, i.e. Ptp=nc/(nc+ne+nu), also known as 
probability of correct identification (PCI), as a function of the number of decision 
classes. It can be observed, that the scalability depends heavily on the base classifier, 
and that SVM clearly outperforms its rivals. For this base classifier, as new decision 
classes are added to the problem, the recognition performance gradually decreases. 
The major drop-offs occur when T72 tank and 2S1 self-propelled gun (classes 5 and 
6, respectively), are added to the training data; this is probably due to the fact that 
these objects are visually similar to each other (e.g., both have gun turrets) and 
significantly resemble the T62 tank (class 3). On the contrary, introducing 



Coevolution and Linear Genetic Programming for Visual Learning      9 

consecutive classes 7 and 8 (BMP2 and BTR60) did not affect the performance much; 
more than this, an improvement of accuracy is even observable for class 7. 
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Fig. 5. (a) Test set recognition ratio as a function of number of decision classes. (b) ROC 
curves for different number of decision classes (base classifier: SVM). 

Figure 5(b) shows the receiver operating characteristics (ROC) curves obtained, for 
the recognition systems using SVM as a base classifier, by modifying the confidence 
threshold that controls whether the classifier votes. The false positive rate is defined 
here as Pfp=ne/(nc+ne+nu). Again, the results support our method: the curves do not 
drop rapidly as the false positive rate decreases. Therefore, very high accuracy of 
classification, i.e., nc/(nc+ne), may be obtained when accepting a reasonable rejection 
rate nu/(nc+ne+nu). For instance, for 4 decision classes, when Pfp=0.008, Ptp=0.885 
(see marked point in Fig. 5(b)), and, therefore, rejection rate is 1-(Pfp+Ptp)=0.107, the 
accuracy of classification equals 0.991.  

Object variants. A desirable property of an object recognition system is its ability to 
recognize different variants of the same object. This task may pose some difficulties, 
as configurations of vehicles often vary significantly. To provide a comparison with 
human-designed recognition system, we use the conditions of the experiment reported 
in [2]. In particular, we synthesized recognition systems using:  

• 2 objects: BMP2#C21, T72#132,  
• 4 objects: BMP2#C21, T72#132, BTR70#C71, and ZSU23/4. 

For both of these cases, the testing set includes two other variants of BMP2 (#9563 
and #9566), and two other variants of T72 (#812 and #s7). 

The results of the test set evaluation shown in the confusion matrices (Table 1) 
suggest that, even when the recognized objects differ significantly from the models 
provided in the training data, the approach is still able to maintain high performance. 
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Here the true positive rate Ptp equals 0.804 and 0.793, for 2- and 4-class systems, 
respectively. For the cases where a decision can be made (83.3% and 89.2%, 
respectively), the values of classification accuracy, 0.966 and 0.940, respectively, are 
comparable to the forced recognition results of the human-designed recognition 
algorithms reported in [2], which are 0.958 and 0.942, respectively. Note that in the 
test, we have not used ‘confusers’, i.e. test images from different classes that those 
present in the training set, as opposed to [2], where BRDM2 armored personnel 
carrier has been used for that purpose. 

 

Table 1. Confusion matrices for recognition of object variants. 

BMP2 T72 No BMP2 T72 BTR ZSU No
Object Serial # [#C21] [#132] decision [#C21] [#132] [#C71] [#d08] decision
BMP2 [#9563,9566] 295 18 78 293 27 27 1 43

T72 [#812,s7] 4 330 52 12 323 1 9 41

Test objects
2-class system

Predicted class 
4-class system

 

7   Conclusions 

In this contribution, we provide experimental evidence for the possibility of 
synthesizing, without or with little human intervention, a feature-based recognition 
system which recognizes 3D objects at the performance level that can be comparable 
to handcrafted solutions. Let us emphasize that these encouraging results are obtained 
in the demanding field of SAR imagery, where the acquired images only roughly 
depict the underlying 3D structure of the object. 

There are several major factors that contribute to the overall high performance of 
the approach. First of all, the paradigm of coevolution allows us to decompose the 
task of representation (feature set) construction into several semi-independent, 
cooperating subtasks. In this way, we exploit the inherent modularity of the learning 
process, without the need of specifying explicit objectives for each developed feature 
extraction procedure. Secondly, the approach manipulates LGP-encoded feature 
extraction procedures, as opposed to most approaches which are usually limited to 
learning meant as parameter optimization. This allows for learning sophisticated 
features, which are novel and sometimes very different from expert’s intuition, as 
may be seen from example shown in Figure 6. And thirdly, the fusion at feature and 
decision level helps us to aggregate sometimes contradictory information sources and 
build a recognition system that is comparable to human-designed system performance 
with a bunch of simple components at hand.  
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Fig. 6. Processing carried out by one of the evolved procedures shown as a graph (small 
rectangles in images depict masks; boxes: local operations; rounded boxes: global operations). 
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