
Coevolution and Linear Genetic Programming for
Visual Learning

Krzysztof Krawiec1 and Bir Bhanu

Center for Research in Intelligent Systems
University of California, Riverside, CA 92521-0425, USA

{kkrawiec,bhanu}@cris.ucr.edu

Abstract. In this paper, a novel genetically-inspired visual learning method is
proposed. Given the training images, this general approach induces a
sophisticated feature-based recognition system, by using cooperative
coevolution and linear genetic programming for the procedural representation
of feature extraction agents. The paper describes the learning algorithm and
provides a firm rationale for its design. An extensive experimental evaluation,
on the demanding real-world task of object recognition in synthetic aperture
radar (SAR) imagery, shows the competitiveness of the proposed approach with
human-designed recognition systems.

1 Introduction

Most real-world learning tasks concerning visual information processing are
inherently complex. This complexity results not only from the large volume of data
that one usually needs to process, but also from its spatial nature, information
incompleteness, and, most of all, from the vast number of hypotheses that have to be
considered in the learning process and the ‘ruggedness’ of the fitness landscape.
Therefore, the design of a visual learning algorithm mostly consists in modeling its
capabilities so that it is effective in solving the problem. To induce useful hypotheses
on one hand and avoid overfitting to the training data on the other, some assumptions
have to be made, concerning training data and hypothesis representation, known as
inductive bias and representation bias, respectively. In visual learning, these biases
have to be augmented by an extra ‘visual bias’, i.e., knowledge related to the visual
nature of the information being subject to the learning process. A part of that is
general knowledge concerning vision (background knowledge, BK), for instance,
basic concepts like pixel proximity, edges, regions, primitive features, etc. However,
usually a more specific domain knowledge (DK) related to a particular
task/application (e.g., fingerprint identification, face recognition, etc.) is also
required.

Currently, most recognition methods make intense use of DK to attain a
competitive performance level. This is, however, a double-edged sword, as the more

1 On a temporary leave from Institute of Computing Science, Poznań University of

Technology, Poznań, Poland.

2 Krzysztof Krawiec and Bir Bhanu

DK the method uses, the more specific it becomes and the less general and
transferable is the knowledge it acquires. The contribution of such over-specific
methods to the overall body of knowledge is questionable.

Therefore, in this paper, we propose a general-purpose visual learning method that
requires only BK and produces a complete recognition system that is able to classify
objects in images. To cope with the complexity of the recognition task, we break it
down into components. However, the ability to identify building blocks is a
necessary, but not a sufficient, precondition for a successful learning task. To enforce
learning in each identified component, we need an evaluation function that spans over
the space of all potential solutions and guides the learning process. Unfortunately,
when no a priori definition of module’s ‘desired output’ is available, this requirement
is hard to meet. This is why we propose to employ here cooperative coevolution [10],
as it does not require the explicit specification of objectives for each component.

2 Related Work and Contributions

No general methodology has been developed so far that effectively automates the
visual learning process. Several methods have been reported in the literature; they
include blackboard architecture, case-based reasoning, reinforcement learning, and
automatic acquisition of models, to mention the most predominant. The paradigm of
evolutionary computation (EC) has also found applications in image processing and
analysis. It has been found effective for its ability to perform global parallel search in
high-dimensional search spaces and to resist the local optima problem. However, in
most approaches the learning is limited to parameter optimization. Relatively few
results have been reported [5,8,13,14], that perform visual learning in the deep sense,
i.e., with a learner being able to synthesize and manipulate an entire recognition
system.

The major contribution of this paper is a general method that, given only a set of
training images, performs visual learning and yields a complete feature-based
recognition system. Its novelty consists mostly in (i) procedural representation of
features for recognition, (ii) utilization of coevolutionary computation for induction of
image representation, and (iii) a learning process that optimizes the image feature
definitions, prior to classifier induction.

3 Coevolutionary Construction of Feature Extraction Procedures

We pose visual learning as the search of the space of image representations (sets of
features). For this purpose, we propose to use cooperative coevolution (CC) [10],
which, besides being appealing from the theoretical viewpoint, has been reported to
yield interesting results in some experiments [15]. In CC, one maintains many
populations, with individuals in populations encoding only a part of the solution to
the problem. To undergo evaluation, individuals have to be (temporarily) combined
with individuals from the remaining populations to form an organism (solution). This

Coevolution and Linear Genetic Programming for Visual Learning 3

joint evaluation scheme forces the populations to cooperate. Except for this evaluation
step, other steps of evolutionary algorithm proceed in each population independently.

According to Wolpert’s ‘No Free Lunch’ theorem [17], the choice of this particular
search method is irrelevant, as the average performance of any metaheuristic search
over a set of all possible fitness functions is the same. In the real world, however, not
all fitness functions are equally probable. Most real-world problems are characterized
by some features that make them specific. The practical utility of a search/learning
algorithm depends, therefore, on its ability to detect and benefit from those features.

The high complexity and decomposable nature of the visual learning task are such
features. Cooperative coevolution seems to fit them well, as it provides the possibility
of breaking up a complex problem into components without specifying explicitly the
objectives for them. The manner in which the individuals from populations cooperate
emerges as the evolution proceeds. In our opinion, this makes CC especially
appealing to the problem of visual learning, where the overall object recognition task
is well defined, but there is no a priori knowledge about what should be expected at
intermediate stages of processing, or such knowledge requires an extra effort from the
designer.

In [3], we provide experimental evidence for the superiority of CC-based feature
construction over standard EC approach in the standard machine learning setting;
here, we extend this idea to visual learning. Following the feature-based recognition
paradigm, we split the object recognition process into two modules: feature extraction
and decision making. The algorithm learns from a finite training set of examples
(images) D in a supervised manner, i.e. requires D to be partitioned into finite number
of pairwise disjoint decision classes Di.

In the coevolutionary run, n populations cooperate in the task of building the
complete image representation, with each population responsible for evolving one
component. Therefore, the cooperation here may be characterized as taking place at
the feature level. In particular, each individual I from a given population encodes a
single feature extraction procedure. For clarity, details of this encoding are provided
in Section 4.

Organism EvaluationPopulation

#1

Population
#i

Population
#n

Representative I1
*

Representative In
*

Basic image
processing
operations

Cross-validation
experiment

… Fitness
value
f(O,D)

Feature vectors Y(X)
for all training images X∈D

Training
images D

LGP program
interpreter

Fast
classifier Cfit

…

Representative I1
*

Predictive
accuracy

Organism O

Individual Ii

Fig. 1. The evaluation of an individual Ii from ith population.

4 Krzysztof Krawiec and Bir Bhanu

The coevolutionary search proceeds in all populations independently, except for
the evaluation phase, shown in Fig. 1. To evaluate an individual Ij from population #j,
we first provide for the remaining part of the representation. For this purpose,
representatives are selected from all the remaining populations i≠j. A
representative of i

*
iI

*
iI th population is defined here in a way that has been reported to

work best [15]: it is the best individual w.r.t. the previous evaluation. In the first
generation of evolutionary run, since no prior evaluation data is given, it is a
randomly chosen individual.

Subsequently, Ij is temporarily combined with representatives of all the remaining
populations to form an organism

**
1

*
1

*
1 ,,,,,, njjj IIIIIO KK +−= . (1)

Then, the feature extraction procedures encoded by individuals from O are ‘run’ (see
Section 4) for all images X from the training set D. The feature values y computed by
them are concatenated, building the compound feature vector Y:

),(,),,(),,(),,(,),,()(**
1

*
1

*
1 XIXIXIXIXIX njjj yyyyyY KK +−= . (2)

Feature vectors Y(X), computed for all training images X∈D, together with the
images’ decision class labels constitute the dataset:

},:),({ ii DDXiX ∀∈∀Y (3)

Finally, cross-validation, i.e. multiple train-and-test procedure is carried out on these
data. For the sake of speed, we use here a fast classifier Cfit that is usually much
simpler than the classifier used in the final recognition system. The resulting
predictive recognition ratio (see equation 4) becomes the evaluation of the organism
O, which is subsequently assigned as the fitness value to f () the individual Ij,
concluding its evaluation process:

{ }())(,,))((,),(
),(),(

/ DcardDiXCDXiXcard
DOfDIf

ii

j

∀=∧∈∀=
==

YY

(4)

where card() denotes cardinality of a set. Using this evaluation procedure, the
coevolutionary search proceeds until some stopping criterion (usually considering
computation time) is met. The final outcome of the coevolutionary run is the best
found organism/representation O*.

4 Representation of Feature Extraction Procedures

For representing the feature extraction procedures as individuals in the evolutionary
process, we adopt a variety of Linear Genetic Programming (LGP) [1], a hybrid of
genetic algorithms (GA) and genetic programming (GP). The individual’s genome is
a fixed-length string of bytes, representing a sequential program composed of
(possibly parameterized) basic operations that work on images and scalar data. This

Coevolution and Linear Genetic Programming for Visual Learning 5

representation combines advantages of both GP and GA, being both procedural and
more resistant to the destructive effect of crossover that may occur in ‘regular’ GP
[1].

A feature extraction procedure accepts an image X as input and yields a vector y of
scalar values as the result. Its operations are effectively calls to image processing and
feature extraction functions. They work on registers, and may use them for both input
as well as output arguments. Image registers store processed images, whereas real-
number registers keep intermediate scalar results features. Each image register has
single channel (grayscale), the same dimensions as the input image X, and maintains a
rectangular mask that, when used by an operation, limits the processing to its area.
For simplicity, the numbers of both types of registers are controlled by the same
parameter m.

Each chunk of four consecutive bytes in the genome encodes a single operation
with the following components:

(a) operation code,
(b) mask flag – decides whether the operation should be global (work on the entire

image) or local (limited to the mask),
(c) mask dimensions (ignored if the mask flag is ‘off’),
(d) arguments: references to registers to fetch input data and store the result.

Operation
decoding/
interpretation

op
code

Operation #1

Image registers

241 32 16 1945 189 211 11 44 78 131168 …

Operation #3Operation #2

Interpreter’s reading head shifts over genome
to read and execute consecutive operations

Library of basic
image processing

and feature extraction
procedures

Register access
(read/write)

Procedure
call

Working memory
morph_open(R1,R2)

arguments

Real-number registers

r1 r2 rm…

Genome
of individual I
(LGP program)

Initial contents:
copies of the
input image X
with masks set to
distinctive featuresR1 R2 Rm…
Feature values
yi(X), i=1,…,m
fetched from here
after execution
of entire
LGP program

Fig. 2. Execution of LGP code contained in individual’s I genome (for a single image X).

Fig. 2 shows the execution at the moment of executing the following operation:
morphological opening (a), applied locally (b) to the mask of size 14×14 (c) to the
image fetched from image register pointed by argument #1, and storing the result in
image register pointed by argument #2 (d). There are currently 70 operations
implemented in the system. They mostly consist of calls to functions from Intel Image

6 Krzysztof Krawiec and Bir Bhanu

Processing and OpenCV libraries, and encompass image processing, mask-related
operations, feature extraction, and arithmetic and logic operations.

The processing of a single input image X ∈ D by the LGP procedure encoded in an
individual I proceeds as follows (Fig. 2):

1. Initialization: Each of the m image registers is set to X. The masks of images are
set to the m most distinctive local features (here: bright ‘blobs’) found in the
image. Real-number registers are set to the center coordinates of corresponding
masks.

2. Execution: the operations encoded by I are carried out one by one, with
intermediate results stored in registers.

3. Interpretation: the scalar values yj(I,X), j=1,…,m, contained in the m real-value
registers are interpreted as the output yielded by I for image X. The values are
gathered to form an individual’s output vector

),(,),,(),(1 XIyXIyXI mK=y , (5)

that is subject to further processing described in Section 3.

5 Architecture of the Recognition System

The overall recognition system consists of: (i) the best feature extraction procedures
O* constructed using the approach described in Sections 3 and 4, and (ii) classifiers
trained using those features.

We incorporate a multi-agent methodology that aims to compensate for the
suboptimal character of representations elaborated by the evolutionary process and
allows us to boost the overall performance.

Recognition subsystem #nsub

Recognition subsystem #2

Input
image

X

Recognition subsystem #1

Classifier
C

Synthesized
representation O*

Y(X) C(Y(X))
Voting

Final
decision

…

Fig. 3. The top-level architecture of recognition system.

The basic prerequisite for the agents’ fusion to become beneficial is their
diversification. This may be ensured by using homogenous agents with different
parameter settings, homogenous agents with different training data (e.g., bagging [4]),
heterogeneous agents, etc. Here, the diversification is naturally provided by the
random nature of the genetic search. In particular, we run many genetic searches that
start from different initial states (initial populations). The best representation O*
evolved in each run becomes a part of a single subsystem in the recognition system’s
architecture (see Fig. 3). Each subsystem has two major components: (i) a

Coevolution and Linear Genetic Programming for Visual Learning 7

representation O*, and (ii) a classifier C trained using that representation. As this
classifier training is done once per subsystem, a more sophisticated classifier C may
be used here (as compared to the classifier Cfit used in the evaluation function).

The subsystems process the input image X independently and output recognition
decisions that are further aggregated by a simple majority voting procedure into the
final decision. The subsystems are therefore homogenous as far as the structure is
concerned; they only differ in the features extracted from the input image and the
decisions made. The number of subsystems nsub is a parameter set by the designer.

6 Experimental Results

The primary objective of the computational experiment is to test the scalability of the
approach with respect to the number of decision classes and its sensitivity to various
types of object distortions. As an experimental testbed, we choose the demanding task
of object recognition in synthetic aperture radar (SAR) images. There are several
difficulties that make recognition in this modality extremely hard:

• poor visibility of objects – usually only prominent scattering centers are visible,
• low persistence of features under rotation, and
• high levels of noise.

The data source is the MSTAR public database [12] containing real images of several
objects taken at different azimuths and at 1-foot spatial resolution. From the original
complex (2-channel) SAR images, we extract the magnitude component and crop it to
48×48 pixels. No other form of preprocessing is applied.

ZSU 23/4

BRDM ZIL131

T72#A04

Fig. 4. Selected objects and their SAR images used in the learning experiment.

The following parameter settings are used for each coevolutionary run: number of
subsystems nsub: 10; classifier Cfit used for feature set evaluation: decision tree inducer
C4.5 [11]; mutation operator: one-point, probability 0.1; crossover operator: one-
point, probability 1.0, cutting allowed at every point; selection operator: tournament
selection with tournament pool size = 5; number of registers (image and
numeric) m: 2; number of populations n: 4; genome length: 40 bytes (10 operations);

8 Krzysztof Krawiec and Bir Bhanu

single population size: 200 individuals; time limit for evolutionary search: 4000
seconds (Pentium PC 1.4 GHz processor).

A compound classifier C is used to boost the recognition performance. In
particular, C implements the ‘1-vs.-all’ scheme, i.e. it is composed of l base
classifiers (where l is the number of decision classes), each of them working as a
binary (two-class) discriminator between a single decision class and all the remaining
classes. To aggregate their outputs, a simple decision rule is used that yields final
class assignment only if the base classifiers are consistent and indicate a single
decision class. With this strict rule, any inconsistency among the base classifiers (i.e.,
no class indicated or more than one class indicated) disables univocal decision and the
example remains unclassified (assigned to ‘No decision’ category).

The system’s performance is measured using different base classifiers (if not stated
otherwise, the classifier uses default parameter settings as specified in [16]):

• support vector machine with polynomial kernels of degree 3 (trained using
sequential minimal optimization algorithm [9] with complexity parameter set
to 10),

• nonlinear neural networks with sigmoidal units trained using backpropagation
algorithm with momentum,

• C4.5 decision tree inducer [11].

Scalability. To investigate the scalability of the proposed approach w.r.t. to the
problem size, we use several datasets with increasing numbers of decision classes for
a 15-deg. depression angle, starting from l=2 decision classes: BRDM2 and ZSU.
Consecutive problems are created by adding the decision classes up to l=8 in the
following order: T62, Zil131, a variant A04 of T72 (T72#A04 in short), 2S1,
BMP2#9563, and BTR70#C71.

For ith decision class, its representation Di in the training data D consists of two
subsets of images sampled uniformly from the original MSTAR database with respect
to a 6-degree azimuth step. Training set D, therefore, always contains 2*(360/6)=120
images from each decision class, so its total size is 120*l. The corresponding test set
T contains all the remaining images (for a given object and elevation angle) from the
original MSTAR collection. In this way, the training and test sets are strictly disjoint.
Moreover, the learning task is well represented by the training set as far as the
azimuth is concerned. Therefore, there is no need for multiple train-and-test
procedures here and the results presented in the following all use this single particular
partitioning of MSTAR data.

Let nc, ne, and nu, denote respectively the numbers of test objects correctly
classified, erroneously classified, and unclassified by the recognition system.
Figure 5(a) presents the true positive rate, i.e. Ptp=nc/(nc+ne+nu), also known as
probability of correct identification (PCI), as a function of the number of decision
classes. It can be observed, that the scalability depends heavily on the base classifier,
and that SVM clearly outperforms its rivals. For this base classifier, as new decision
classes are added to the problem, the recognition performance gradually decreases.
The major drop-offs occur when T72 tank and 2S1 self-propelled gun (classes 5 and
6, respectively), are added to the training data; this is probably due to the fact that
these objects are visually similar to each other (e.g., both have gun turrets) and
significantly resemble the T62 tank (class 3). On the contrary, introducing

Coevolution and Linear Genetic Programming for Visual Learning 9

consecutive classes 7 and 8 (BMP2 and BTR60) did not affect the performance much;
more than this, an improvement of accuracy is even observable for class 7.

1.000

.961 .964

.929

.899
.910 .906

.7

.8

.9

1.0

2 3 4 5 6 7 8
of decision classes

(a)

Tr
ue

 po
sit

ive
 ra

te

SVM
NN
C4.5

.70

.75

.80

.85

.90

.95

1.00

0 0.2 0.4 0.6 0.8 1
False positive rate

(b)

Tr
ue

 po
sit

ive
 ra

te

3 classes
4 classes
5 classes
6 classes
7 classes
8 classes

Fig. 5. (a) Test set recognition ratio as a function of number of decision classes. (b) ROC
curves for different number of decision classes (base classifier: SVM).

Figure 5(b) shows the receiver operating characteristics (ROC) curves obtained, for
the recognition systems using SVM as a base classifier, by modifying the confidence
threshold that controls whether the classifier votes. The false positive rate is defined
here as Pfp=ne/(nc+ne+nu). Again, the results support our method: the curves do not
drop rapidly as the false positive rate decreases. Therefore, very high accuracy of
classification, i.e., nc/(nc+ne), may be obtained when accepting a reasonable rejection
rate nu/(nc+ne+nu). For instance, for 4 decision classes, when Pfp=0.008, Ptp=0.885
(see marked point in Fig. 5(b)), and, therefore, rejection rate is 1-(Pfp+Ptp)=0.107, the
accuracy of classification equals 0.991.

Object variants. A desirable property of an object recognition system is its ability to
recognize different variants of the same object. This task may pose some difficulties,
as configurations of vehicles often vary significantly. To provide a comparison with
human-designed recognition system, we use the conditions of the experiment reported
in [2]. In particular, we synthesized recognition systems using:

• 2 objects: BMP2#C21, T72#132,
• 4 objects: BMP2#C21, T72#132, BTR70#C71, and ZSU23/4.

For both of these cases, the testing set includes two other variants of BMP2 (#9563
and #9566), and two other variants of T72 (#812 and #s7).

The results of the test set evaluation shown in the confusion matrices (Table 1)
suggest that, even when the recognized objects differ significantly from the models
provided in the training data, the approach is still able to maintain high performance.

10 Krzysztof Krawiec and Bir Bhanu

Here the true positive rate Ptp equals 0.804 and 0.793, for 2- and 4-class systems,
respectively. For the cases where a decision can be made (83.3% and 89.2%,
respectively), the values of classification accuracy, 0.966 and 0.940, respectively, are
comparable to the forced recognition results of the human-designed recognition
algorithms reported in [2], which are 0.958 and 0.942, respectively. Note that in the
test, we have not used ‘confusers’, i.e. test images from different classes that those
present in the training set, as opposed to [2], where BRDM2 armored personnel
carrier has been used for that purpose.

Table 1. Confusion matrices for recognition of object variants.

BMP2 T72 No BMP2 T72 BTR ZSU No
Object Serial # [#C21] [#132] decision [#C21] [#132] [#C71] [#d08] decision
BMP2 [#9563,9566] 295 18 78 293 27 27 1 43

T72 [#812,s7] 4 330 52 12 323 1 9 41

Test objects
2-class system

Predicted class
4-class system

7 Conclusions

In this contribution, we provide experimental evidence for the possibility of
synthesizing, without or with little human intervention, a feature-based recognition
system which recognizes 3D objects at the performance level that can be comparable
to handcrafted solutions. Let us emphasize that these encouraging results are obtained
in the demanding field of SAR imagery, where the acquired images only roughly
depict the underlying 3D structure of the object.

There are several major factors that contribute to the overall high performance of
the approach. First of all, the paradigm of coevolution allows us to decompose the
task of representation (feature set) construction into several semi-independent,
cooperating subtasks. In this way, we exploit the inherent modularity of the learning
process, without the need of specifying explicit objectives for each developed feature
extraction procedure. Secondly, the approach manipulates LGP-encoded feature
extraction procedures, as opposed to most approaches which are usually limited to
learning meant as parameter optimization. This allows for learning sophisticated
features, which are novel and sometimes very different from expert’s intuition, as
may be seen from example shown in Figure 6. And thirdly, the fusion at feature and
decision level helps us to aggregate sometimes contradictory information sources and
build a recognition system that is comparable to human-designed system performance
with a bunch of simple components at hand.

Coevolution and Linear Genetic Programming for Visual Learning 11

y1=20

Initial
register
contents

CrossCorrellation

HiPass3x3 MorphClose

Logical Or

NormDiff y2=173190

AbsDiff

PushROI X

Feature values
y(I,X)

Input
image
X

Graph of processing
encoded by

LGP individual I

Gaussian

Fig. 6. Processing carried out by one of the evolved procedures shown as a graph (small
rectangles in images depict masks; boxes: local operations; rounded boxes: global operations).

Acknowledgements

This research was supported by the grant F33615-99-C-1440. The contents of the
information do not necessarily reflect the position or policy of the U. S. Government.
The first author is supported by the Polish State Committee for Scientific Research,
research grant no. 8T11F 006 19. We would like to thank the authors of software
packages: ECJ [7] and WEKA [16] for making their software publicly available.

References

1. Banzhaf, W., Nordic, P., Keller, R., Francine, F.: Genetic Programming. An Introduction.
On the automatic Evolution of Computer Programs and its Application. Morgan Kaufmann,
San Francisco, Calif. (1998)

2. Bhanu, B., Jones, G.: Increasing the discrimination of SAR recognition models. Optical
Engineering 12 (2002) 3298–3306

3. Bhanu, B. and Krawiec, K.: Coevolutionary construction of features for transformation of
representation in machine learning. Proc. Genetic and Evolutionary Computation
Conference (GECCO 2002). AAAI Press, New York (2002) 249–254

4. Breiman, L.: Bagging predictors. Machine Learning 24 (1996) 123–140
5. Draper, B., Hanson, A., Riseman, E.: Knowledge-Directed Vision: Control, Learning and

Integration. Proc. IEEE 84 (1996) 1625–1637
6. Krawiec, K.: On the Use of Pair wise Comparison of Hypotheses in Evolutionary Learning

Applied to Learning from Visual Examples. In: Perner, P. (ed.): Machine Learning and Data

12 Krzysztof Krawiec and Bir Bhanu

Mining in Pattern Recognition. Lecture Notes in Artificial Intelligence, Vol. 2123. Springer
Verlag, Berlin (2001) 307–321.

7. Luke, S.: ECJ Evolutionary Computation System. http://www.cs.umd.edu/projects/plus/
ec/ecj/ (2002)

8. Peng, J., Bhanu, B.: Closed-Loop Object Recognition Using Reinforcement Learning. IEEE
Trans. on PAMI 20 (1998) 139–154

9. Platt, J.: Fast Training of Support Vector Machines using Sequential Minimal Optimization.
In: Schölkopf, B., Burges, C., Smola, A. (eds.): Advances in Kernel Methods - Support
Vector Learning. MIT Press, Cambridge, Mass. (1998)

10. Potter, M.A., De Jong, K.A.: Cooperative Coevolution: An Architecture for Evolving
Coadapted Subcomponents. Evolutionary Computation 8 (2000) 1–29

11. Quinlan, J.R.: C4.5: Programs for machine learning. Morgan Kaufmann, San Mateo, Calif.
(1992)

12. Ross, T., Worell, S., Velten, V., Mossing, J., Bryant, M.: Standard SAR ATR Evaluation
Experiments using the MSTAR Public Release Data Set. SPIE Proc.: Algorithms for
Synthetic Aperture Radar Imagery V, Vol. 3370, Orlando, FL (1998) 566–573

13. Segen, J.: GEST: A Learning Computer Vision System that Recognizes Hand Gestures. In:
Michalski, R.S., Tecuci, G., (eds.): Machine Learning. A Multistrategy Approach. Volume
IV. Morgan Kaufmann, San Francisco, Calif. (1994) 621–634

14. Teller, A., Veloso, M.: A Controlled Experiment: Evolution for Learning Difficult Image
Classification. Proc. 7th Portuguese Conference on Artificial Intelligence. Springer Verlag,
Berlin, Germany (1995) 165–176

15. Wiegand, R.P., Liles, W.C., De Jong, K.A.: An Empirical Analysis of Collaboration
Methods in Cooperative Coevolutionary Algorithms. Proc. Genetic and Evolutionary
Computation Conference (GECCO 2001). Morgan Kaufmann, San Francisco, Calif. (2001)
1235–1242

16. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques
with Java Implementations. Morgan Kaufmann, San Francisco, Calif. (1999)

17. Wolpert, D., Macready, W.G.: No Free Lunch Theorems for Search. Tech. Report SFI-TR-
95-010, The Santa Fe Institute (1995)

