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Abstract
One of the main tasks in content-based image retrieval
(CBIR) is to reduce the gap between low-level visual
features and high-level human concepts. This paper
presents a new semi-supervised EM algorithm (NSS-
EM), where the image distribution in feature space is
modeled as a mixture of Gaussian densities. Due to
the statistical mechanism of accumulating and process-
ing meta knowledge, the NSS-EM algorithm with long-
term learning of mixture model parameters can deal
with the cases where users may mislabel images dur-
ing relevance feedback. Our approach that integrates
mixture model of the data, relevance feedback and long-
term learning helps to improve retrieval performance.
The concept learning is incrementally refined with in-
creased retrieval experiences. Experiment results on
Corel database show the efficacy of our proposed con-
cept learning approach.

1 Introduction
In recent years, content-based image retrieval (CBIR)
has received widespread research interest in the field
of computer vision and pattern recognition. Based on
the visual features (such as color, texture and shape)
extracted from images, CBIR systems attempt to cater
to the needs of users who want to retrieve images be-
longing to their desired concepts in mind.

The relevant feedback mechanism makes it possible
for CBIR systems to learn human concepts since users
provide some positive and negative image labeling in-
formation, which helps systems to dynamically adapt
and update the relevance of images to be retrieved. The
main techniques in relevance feedback include query
shifting [1], relevance estimation [2] [3], Bayesian in-
ference [4], support vector machine active learning [5].
All these methods are only adaptations of relevance
feedback, instead of systematic concept learning in fea-
ture space. Furthermore, Once the user is done with
a query and starts a new query, the meta knowledge
gained by the systems with previous queries is lost.
Meta knowledge is the experience of each query im-

age with various users. This experience consists of the
classification of each image into various classes (clus-
ters), relevances (weights) of features and the number
of times this image is selected as a query and marked
as positive or negative.

Since real image databases experience retrievals
from many users, it is possible to exploit previous re-
trieval experiences (meta knowledge) to learn and re-
fine visual concepts. Some CBIR systems exploiting
meta knowledge for concept learning and retrieval im-
provement have appeared recently [6][7][8]. In all these
works, with retrieval experiences in conjunction with
relevance feedback, the concept learning is improved,
which helps to capture user’s desired concept more pre-
cisely, and thus, future retrieval performance is im-
proved. This process necessitates a model for the learn-
ing process; otherwise, it is only empirical.

We model the image distribution in database fea-
ture space as mixture Gaussian densities, which has
been adopted for image database analysis by some re-
searchers recently [9] [10]. In [9], the probabilistic im-
age retrieval model based on mixture densities is an-
alyzed, and short term and long term user feedbacks
are combined by probabilistic inference. Barnard and
Forsyth [10] organize images (with associated words)
by a hierarchical model to help browsing and searching.
Our work in this paper distinguishes from these ap-
proaches by focusing on semi-supervised mixture model
fitting by integrating concept learning with multiple
users’ relevance feedbacks. In [9], only standard EM
algorithm is used for model fitting in an unsupervised
manner. In [10], some images are used to train the clus-
tering directly (without user intervention); this train-
ing stage is unrealistic in real applications because the
randomly selected training data set may not represent
the image distribution of the entire database well.

The necessity of semi-supervised learning is due to
the gap between numeric-oriented feature data and
concepts understood by humans. For the pattern
recognition tasks in real world, it is usually difficult
and sometimes impossible to rely on a pure feature-
based clustering (unsupervised clustering) algorithm to
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Figure 1: System diagram for concept learning using
new semi-supervised EM algorithm (NSS-EM).

obtain satisfactory results.
The semi-supervised fuzzy c-means (SS-FCM) clus-

tering methods [11][12] attempt to overcome this limi-
tation when the labels of some of the data are already
known; however, these approaches tend to be heuris-
tic since they do not employ explicit models. Recently,
some papers on semi-supervised learning based on mix-
ture models have been published. Wu and Huang [13]
integrate multiple discriminant analysis (MDA) with
EM framework so that weak classifiers are boosted
by exploring discriminant features in a self-supervised
fashion. Another approach dealing with labeled and
unlabeled data for Gaussian mixture models [14] is
to modify the mixture log-likelihood function as the
combination of two terms: the one for unlabeled data
and the other for labeled data. These semi-supervised
learning approaches assume that the labeled data be-
long to some specified classes (clusters). In reality, an-
other kind of labeling information that “some data do
NOT belong to some classes (clusters)” is also avail-
able in many applications, and it may also help the
semi-supervised learning. Also these approaches as-
sume that the labeling information is correct.

Figure 1 illustrates our system framework for con-
cept learning using the NSS-EM algorithm on mixture
model. Our contributions include: (a) We propose
a new semi-supervised EM algorithm for fitting the
mixture model, so that the concept learning is incre-
mentally refined with increased retrieval experiences.
Our approach can deal with the case of users’ mis-
labeling during relevance feedback. (b) We also pro-
pose a new measurement for image dissimilarity by in-
tegrating concept learning with relevance feedback to
improve retrieval performance.

2 Mixture model
We assume that the database image distribution in fea-
ture space is a c-component Gaussian mixture C =
{C1, . . . , Cc} [9], whose probability density function is

f(x; Ψ) =
c∑

i=1

πifi(x;µi,Σi) (1)

where x is d-dimensional feature, fi(x) are component
densities and πi (i = 1, 2, . . . , c) are component propor-
tions ( 0 ≤ πi ≤ 1 and

∑c
i=1 πi = 1 ). The component

densities are specified by means µi and covariances Σi.
Ψ is the vector containing all the unknown parameters
i.e., Ψ =

⋃c
i=1{πi, µi,Σi}. For our image database sys-

tem with N images, there are c concepts each of which
is corresponding to one component. If c is known, the
task of concept learning is accomplished by estimating
the mixture model parameters Ψ.

Given a set of N independent and identical dis-
tribution (i.i.d.) samples X={x1, x2, . . . , xN}
(corresponding to the visual feature vectors of N
database images) from model (1), the maximum
likelihood (ML) estimation of the unknown param-
eter vectors {πi, µi,Σi} can be obtained by the
Expectation-Maximization (EM) approach. Let the
associated binary component-indicator vectors for X
be Z={z1, z2, . . . , zN}, where zj = (zj1, . . . , zjc)

with zji =
{

1 if xj is from ith component
0 otherwise , for j =

1, 2, . . . , N ; i = 1, 2, . . . , c. The complete data log-
likelihood function is given by

log L(X ,Z; Ψ) =
N∏

j=1

c∏
i=1

zji log[πifi(xj ;µi,Σi)] (2)

The EM algorithm produces a sequence of estima-
tions {Ψ̂(k), k = 0, 1, 2, . . .} by proceeding iteratively
in two steps (E-step and M-step) until some termina-
tion criterion is met.

• E-step: The conditional expectation of Z defined
as τji = probΨ̂(k){zji = 1|X} is derived as

τji =
πifi(xj ; µ̂i, Σ̂i)∑c

h=1 πhfh(xj ; µ̂h, Σ̂h)
(3)

for j = 1, 2, . . . , N ; i = 1, 2, . . . , c.

• M-step: Update the estimation of Ψ by
Ψ̂(k + 1) = arg max Φ(Ψ; Ψ̂(k))

The updated expression for component propor-
tions is

πi(t + 1) =

∑N
j=1 τji

N
(i = 1, . . . , c) (4)

For Gaussian mixture models, the expressions for
means and covariances are

µ̂i(t + 1) = (
N∑

j=1

τji)−1
N∑

j=1

xjτji (5)
and

Σ̂i(t + 1) = (
N∑

j=1

τji)−1
N∑

j=1

(xj − µ̂i)(xj − µ̂i)T τji

(6)

3 New SS-EM algorithm

3.1 Problem

Since different users make a variety of queries and
perceive visual content differently in their feedbacks,
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they may provide different sets of positive and nega-
tive labeling information, each of which is defined as
a retrieval experience E = {X+,X−}, where X+ =
{x+

1 , x+
2 , . . . , x+

N+} are labeled as belonging to (positive
for) a certain but unknown component (concept) while
another portion of samples X− = {x−

1 , x−
2 , . . . , x−

N−}
are labeled as NOT belonging to (negative for) that
unknown component (concept). Note that x+

i (i =
1, 2, . . . , N+) and x−

j (j = 1, 2, . . . , N−) are image vi-
sual feature vectors. We assume that query images in
different query sessions are all from the image database
with equal probability of being selected.

With more users’ executions of their queries, the fit-
ting of the mixture model corresponding to the human
concepts may be continually refined over time, hence
the concept learning is improved in the long term. Each
time a retrieval experience is obtained by the system,
the fitting of the mixture model should be updated
based on the current clustering result.

3.2 Shor-term SS-EM algorithm

Now we consider the learning with only a single re-
trieval experience E . We first assume that the compo-
nent with regard to E is already known, and let it be
the hth component with h ∈ {1, 2, . . . , c}.

From the positive and negative labeling information,
we already known some binary component-indicator

vectors values such that zji =
{

1 if i = h
0 otherwise for

i = 1, 2, . . . , c and j ∈ J+, and zjh = 0 for j ∈ J−.
Thus we modify the complete data log-likelihood func-
tion (2) to be
log L(X ,Z; Ψ) =

∏
j∈J u

∏c
i=1 zji log{πifi(xj ; θi)

+
∏

j∈J+ log{πhfh(xj ; θh)}
+

∏
j∈J−

∏c
i=1,i �=h zji log{πifi(xj ; θi)}

In the above expression of the log-likelihood func-
tion, the first term is with regard to those unlabeled
data X u, and it is in the same form as that in (2).
The second term is for the positive labeled data X+

whose component-indicator vectors are already known
so that there is no need to estimate them. For the
negative labeled data X−, their component-indicator
vectors are not totally available and only one of the
elements in each vector is pre-determined to be zero.
Thus the indicator vectors for X− have to be estimated,
as demonstrated by the third term.

Based on the modified log-likelihood function, we
can implement EM algorithm to estimate parameters
in a similar manner as introduced in Section 2. In
E-step, for those pre-determined binary component-
indicator vector elements, there is no need to estimate
i.e., their estimation values are their “real” values, i.e.,

τji = ẑji =
{

1 if i = h
0 otherwise for i = 1, 2, . . . , c and

j ∈ J+, and τjh = zjh = 0 for j ∈ J−. For other un-
known component-indicator vector elements, we have
to estimate them, and their estimation expression is
given in (3). In M-step, the component proportion
estimation is the same as that in (4). For Gaussian
mixture components, the estimations for means and
covariances are given in (5) and (6), respectively. The
result can be derived by using Lagrangian multiplers
method to optimize the modified likelihood function,
and we do not include it in this paper due to space
limitation.

From the above analysis, in the case where the
cluster index h is already known, the EM algorithm
for this semi-supervised learning task is the same as
the procedure introduced in Section 2 except that
some component-indicator vector elements are pre-
determined instead of to be estimated.

If the cluster index h is unknown, we can first
implement unsupervised EM algorithm on the data,
and obtain the clustering result represented by the
component-indicator estimations. Based on this initial
clustering result, h can be derived from the positive
and negative labeling information using a probabilistic
method such that

h = arg max
i=1,2,···,c

P(i) (7)

where P(i) is equal to
prob(x+

1 ∈ Ci, · · · , x+
N+ ∈ Ci, x

−
1 �∈ Ci, · · · , x−

N− �∈ Ci)

= {∏N+

j=1
prob(x+

i ∈ Ci)}{
∏N−

j=1
prob(x−

j �∈ Ci)}
= {∏

j∈J+ τji}{
∏

j∈J−(1 − τji)}
for i = 1, 2, . . . , c. It is obvious that the identification of
h is dependent on the initial clustering result. One may
argue that, if the initial clustering is not good enough,
h may be mis-identified so that the NSS-EM algorithm
is misled and its clustering result becomes worse. In
the following text, we discuss this problem and give an
efficient approach to overcome it.

3.3 Long-term SS-EM algorithm
The SS-EM method with a single retrieval experience
can be extended to the optimization problem with mul-
tiple retrieval experiences.

If some images are randomly selected from a single
component, it is possible that their covariance matrix
is close to the covariance of the original component
[12]. Unfortunately, the labeled images from a single
retrieval are not sufficient; these images form a very
small agglomeration in feature space compared to the
size of a component. This requires that we refine the
mixture model fitting continuously until enough expe-
riences are accumulated.
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In reality, users making queries on an image
database do not always have enough patience to cor-
rectly label all the images presented to them by the
system. More importantly, different users may ascribe
the same image to different concepts. It is obvious that
for an image with multiple opinions on its cluster as-
cription, it should belong to the cluster according to
the opinion supported by the majority of users.

In order to capture and accumulate previous users’
retrieval experiences in the long-term history, we des-
ignate a positive matrix PN×c and a negative ma-
trix QN×c to represent this kind of knowledge. At
the very beginning, when no retrieval has ever been
executed on the system, P are Q are initialized to
be zero matrices. After a retrieval experience, the
elements

{
pj+

1 ,h, · · · , pj+
N+ ,h

}
in P and the elements{

qj−
1 ,h, · · · , qj−

N− ,h

}
in Q are increased by 1. Thus, the

values of pjh and qjh represent to what extent people
agree and disagree to ascribe an image j into the clus-
ter h, respectively.

With the accumulated knowledge contained in P
and Q, the component-indicator vector elements τji de-
rived in (3) can be modified as

τ̃ji =




τji + pji−qji∑c

ι=1
(pjι+qjι)

if pji > qji

0 if pji < qji

τji if pji = qji

(8)

for j = 1, 2, . . . , N and i = 1, 2, . . . , c. Then we nor-
malize these modified component-indicator vectors so
that

∑c
i=1 τ̃ji = 1. This means that, based on nu-

meric feature data, the component-indicator estima-
tion is modified with labeling knowledge derived from
users’ retrieval experience. This modification step is
inserted between E-step and M-step so that the con-
cept learning result is closer to human’s understanding.
The user directed SS-EM algorithm is presented in Fig-
ure 2. EM-algorithm for model estimation is computa-
tionally intense. To avoid that clustering lags behind
retrieval experience derivation in the system, we im-
plement user directed SS-EM algorithm after every s
(s ≥ 1) retrieval experiences, where s is the update
step.

This long-term NSS-EM algorithm is the extension
of NSS-EM introduced in 3.2: the later only has the ex-
tra information from a single retrieval experience while
the former has to deal with multiple retrieval experi-
ences. Due to the knowledge accumulation mechanism
of matrices P and Q, the learning improvement of the
system is guaranteed even though it is possible that the
concepts being sought are occasionally mis-identified
by (7). For the same reason, in the case that users may

• Given the data X , the number of clusters c, the num-
ber of images N . Initialize positive matrix PN×c and
negative matrix QN×c to be zero matrices.

• Implement standard EM algorithm on X .

• Repeat

1. New user executes retrieval.

2. Derive a retrieval experience, update P and Q.

3. E-step: Estimate component-indicator vectors
Z by (3).

4. Use P and Q to modify Z estimation by (8).

5. M-step: Compute component proportions,
means and covariances by (4), (5) and (6), re-
spectively.

6. If ‖L − L′‖ ≤ δ (with δ being a tolerance limit),
stop; else, go to 3 with L′ = L.

Figure 2: Our new semi-supervised EM (NSS-EM) al-
gorithm for long-term concept learning.

mislabel images during relevance feedback, the system
can still learn although the learning rate will be slower.

3.4 Improving retrieval performance
The knowledge of mixture model estimation derived
from concept learning of the image database can
help to improve retrieval performance. We use the
component-indicator estimation τji (j = 1, 2, . . . , N ,
i = 1, 2, . . . , c) to modify the image dissimilarity mea-
surement for the initial search after a query is pre-
sented to the system, whose retrieval performance is
the most important compared with the subsequent it-
erations. For the initial K nearest neighbor (K-NN)
search, the Euclidean distance in the feature space from
one database image xj (j = 1, 2, . . . , N) to the query
xq is defined as D(xq, xj), which we modify as

D′(xq, xj) = e−
βn
N D(xq, xj) −

c∑
i=1

τjiτqi (9)

where N is the database size and n is the number of
retrieval experiences. The second term on the right side
is with regard to concept learning knowledge, which is
derived from

prob{Query q and Image j belong to same class}
=

∑c
i=1 prob{q ∈ Ci and j ∈ Ci}

=
∑c

i=1 prob{q ∈ Ci}prob{j ∈ Ci}
As the concept learning is improved with the retrieval
experiences increased, the second term in (9) should be
given more credit. The parameter β is to make balance
between these two terms. Note the speed of learning
improvement depends on the database size N .

4 Experiments
For the experiments the image database, we simulate
the process of a retrieval system for which queries are
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Figure 3: Sample images of the 12 classes in the
database obtained from Corel stock photo library.

selected randomly among the images in the database.
Let the number of images the user is presented at each
relevance feedback iteration l be 20. To validate the
clustering result R = {R1, . . . ,Rc} from an algorithm,
we compare R with the ground-truth mixture model
C = {C1, . . . , Cc} by using statistical index. A pair of
vectors {xi, xj} are referred to as (I) BS if both vectors
belong to the same component in C and to the same
cluster in R, (II) SD if both vectors belong to the same
component in C and to different clusters in R, (III) DS
if both vectors belong to different components in Let
λ1, λ2 and λ3 be the number of BS, SD and DS pairs
of vectors of X , respectively. The Jaccard coefficient
[15] is defined as JC = λ1

λ1+λ2+λ3
and we use it to

evaluate clustering result.
We construct an image database with 1200 images,

which are selected from Corel stock photo library and
divided into 12 classes. These classes are correspond-
ing to the CDs (series number) in the library includ-
ing Mayan & Aztec Ruins (33), Horses (113), Owls
(75), Sunrises & Sunsets (1), North American Wild-
flowers (127), Ski Scenes (61, 62), Coasts (5), Auto
Racing (21), Firework Photography (73), Divers & Div-
ing (156), Land of the Pyramids (161) and Lions (105).
We remove some images from these CDs since they do
not have good visual features to represent the corre-
sponding concepts, and we add some images from other
CDs to some of the 12 classes. Figure 3 shows sam-
ple images for all of the 12 concepts. We use texture
and color features to represent images. The texture
features are derived from 16 Gabor filters We extract
means and standard deviations from the three channels
in HSV color space. Thus, each image is represented
by 22 features.

We implement our concept learning approach on
this database with c = 12, N = 1200, s = 50 and
β = 100. Initially, the Jaccard coefficient by standard
EM algorithm is 47.1%. Figure 4 shows that the aver-
age Jaccard coefficient is increased with increased re-
trieval experiences in the long term. Compared with
the synthetic data, the concept learning improvement is
slower due to the facts that there are more components
for real data and components need more data sample

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

experiences

JC

noise=0
noise=0.05

Figure 4: Real data: concept learning is improved with
increased retrieval experiences with and without noise.
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Figure 5: Real data: retrieval performance with various
amounts of retrieval experiences.

for higher dimensional features. When the mislabel-
ing noise ratio ν is 0.05, the learning also converges
in the long term although the improvement speed is
slower. Note the probability that the user mislabels
any image at a single relevance feedback iteration is
prob( error ) = 1− (1− ν)l with l being the number of
images presented to the user at each iteration. Thus,
when ν = 0.05 and l = 20, prob(error) is 0.64, which is
quite high.

Figure 5 presents the retrieval performances with
different amounts of retrieval experiences with and
without labeling noise. The retrieval precision is de-
fined as the percentage of positive retrievals out of the
total retrievals. We select an image in this database
as the query, implement our retrieval strategy, and re-
peat this experiment by changing query until each of
the 1200 images has been selected as query. Then we
calculate the average precision at each iteration. With
increased retrieval experiences, the average precision is
improved, especially at initial K-NN search iteration.
This has deep significance for retrieval performance in
practical applications since users usually don’t have
enough patience to repeat relevance feedback iterations
to search the images.

Figure 6 shows two different retrieval results with
the same query image with different retrieval experi-
ences where there is not labeling noise. In (a), there is
no retrieval experience, and K-NN search only yields
10 out of 20 sunset images (row 1: image 1, 2, 4, 5;
row 2: 1, 3, 5; row 3: 3, 5; row 4: image 3); In (b),
after 200 retrieval experiences, 19 sunset images are
presented (except the last one) by our approach.
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(a) no retrieval experience: precision = 10
20

(b) after 200 retrieval experiences: precision = 19
20

Figure 6: Retrieval results for the same query (the first
image) with different retrieval experiences. The user is
looking for sunset images.

5 Discussions and conclusions
This paper proposed mixture model as the image dis-
tribution in feature space of the image database. Based
on this model, a new semi-supervised EM (NSS-EM)
algorithm is presented for concept learning, which can
deal with the case of users’ mislabeling during rele-
vance feedback. We also integrate concept learning re-
sult with relevance feedback to improve retrieval per-
formance. The experiments shows the efficacy of our
concept learning approach. Note that since the num-
ber of visual features used in CBIR is usually large, the
computation load of EM algorithm is heavy. Thus, it
is desired to reduce the dimensionality in feature space
during EM iterations.
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