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Abstract
This paper outlines an appr oachand experimen-

tal results for Synthetic Aperture Radar (SAR) object
recognition using the MSTAR data. With SAR scat-
tering c enter locations and magnitudes as features, the
invariance of these featur esis shown with obje ct ar-
ticulation (e.g., rotation of a tank turr et) and with
external con�guration variants. This scatter er loca-
tion and magnitude quasi-invariance is used as a basis
for development of a SAR recognition system that suc-
cessfully identi�es articulated and non-standard con-
�guration vehicles based on non-articulated, standard
recognition models. The forced recognition results and
pose accur acyare given. The e�e ctof di�er entcon-
fusers on the receiver operating char acteristic(ROC)
curves are illustrated along with ROC curves for con-
�guration variants, articulations and small changes in
depression angle. R esults ar e given that show that in-
tegrating the results of multiple recognizers can lead to
signi�cantly improved performance over the single best
recognizer.

1 Introduction
The performance of an automatic system for recog-

nizing objects in SAR imagery is a complex function of
sensor operating conditions, bac kgroundclutter, ob-
ject con�gurations and the features and algorithms
used for object detection/segmentation, feature ex-
traction and recognition [4]. Model based recognition
using MSTAR data has been a very active area of re-
search in the last several y ears [13 ]-[15]. The focus of
this paper is the recognition subsystem itself, start-
ing with SAR chips of real vehicles from the MSTAR
public data and ending with the vehicle identi�cation.
The speci�c challenges for the recognition subsystem
are to address theneed for automated recognition of
military vehicles that can have articulated parts (like
the turret of a tank), have signi�cant external con�gu-
ration varian ts (like fuel barrels, searchlights, etc.), or
the vehicles can bepartially hidden. Previous recog-
nition methods involving template matching [12 ] are
not useful in some of these cases, because articula-
tion or occlusionc hanges global features like the ob-
ject outline and major axis. In order to character-
ize the performance of the recognition subsystem w e
approach the problem scien ti�cally from fundamen-
tals. For a given sensor system w echaracterize the

variance of features with azimuth, for the objects we
characterize articulation and con�guration invariants
and develop a SAR speci�c recognition system based
on the quasi-invariance of SAR scattering center lo-
cations and magnitudes. We then characterize the
forced recognition performance of this system in terms
of recognition rate, pose accuracy, and show the e�ect
of occlusion. The e�ects of various confuser vehicles
on identi�cation performance results are presented as
vote space scatter plots and ROC curves for con�gu-
ration variants. In addition, ROC curves compare the
results for con�guration variants, for articulated ob-
jects and fora small c hange in depression angle. Fi-
nally ,the e�ect ofin tegrating multiple recognizers is
shown for the most di�cult case, con�guration vari-
ants of the T72 tank and BMP2 armored personnel
carrier (APC) using the most di�cult confuser, the
BTR70 APC.

2 Scattering Center Characteristics
The typical detailed edge and straight line features

of man-made objects in the visual world do not have
good counterparts in SAR images at one foot resolu-
tion, how ev er, there is a wealth of peaks corresponding
to scattering cen ters. The relativ e locations of SAR
scattering centers, determined from local peaks in the
radar return, are related to the aspect and physical ge-
ometry of the object, independent of translation and
serve as distinguishing features. In addition to the
scatterer locations, the magnitudes of the peaks are
also features that we use for recognition.

2.1 Variance with object pose
The typical rigid body rotational transformations

for viewing objects in the visual world do not apply
muc h for the specular radar re
ections of SAR im-
ages. This is because a signi�cant number of features
do not typically persist over a few degrees of rotation.
Since the radar depression angle is generally known,
the signi�cant unknown target rotation is (360o) in az-
imuth. Azimuth persistence or invariance can be ex-
pressed in terms of the percentage of scattering center
locations that are unc hangedover a certain span of
azimuth angles (when we compare scatterer locations
in the ground plane of an image, rotated by some az-
imuth increment, with another image at the result-
ing azimuth angle). Figure 1 shows an example of
the scatterer location invariance (for the 40 strongest
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Figure 1: Scatterer location persistence, T72 #132.

scatterers) as a function of azimuth angle span using
T72 tank (serial number) #132, with various location
tolerances and de�nitions of persistence. The `exact
match' cases have the center of the scatterer pixel from
the rotated image within the pixel boundaries of a
corresponding scatterer. The `within 1 pixel' cases al-
low the scatterer location to move in to one of the 8
adjacent pixel locations. Note that while only 20%
of the scatterer locations are invarian tfor an `exact
match' at 1o azimuth span , 65% of the scatterer loca-
tions are invarian t `within 1 pixel'.The cases labeled
`persists' in Figure 1 enforce the constraint that the
scatterer exist for the en tire span of angles and very
few scatterers continuously persist for even 5o. In the
upper tw ocases (not labeled `persists') scin tillation
is allow ed and the location invariance declines slowly
with azimuth span. The `within 1 pixel' results (that
allow scin tillation) are consistent with the one foot
ISAR results of Dudgeon et al. [5], whose de�nition of
persistence allow ed scintillation. Because of the higher
scatterer location invariance with 1o azimuth span, we
use azimuth models at 1o increments for eac h target,
in contrast to others who ha veused 5o [11], 10o [7],
and 12 models [12].

2.2 Inv ariancewith object con�guration

Many of the scatterer locations are invarian tto
target conditions such as articulation or con�gura-
tion varian tsor to a small change in depression an-
gle. Because the object and R OIare not registered,
w e express the scattering cen ter location invariance
with respect to articulation, con�guration di�erences
or depression angle changes as the maximum number
of corresponding scattering cen ters (whose locations
match within a stated tolerance) for the optimum in-
teger pixel translation. Figure 2(a) shows the location
invariance of the strongest 40 scattering centers with
articulation (turret rotated 315o vs straight) for T72
tank #a64 and similarly, Figure 2(b) shows the in-
variance for con�guration variants: T72 tank #812
vs. #132. In both cases, while the invariance for an
`exact match' of scattering cen ter locations averages
less than 20%, it is over 55% for a location match

within a one pixel (3x3) neighborhood tolerance.
Figure 3(a) shows the probability mass functions

(PMFs) for percent amplitude change for the strongest
40 articulated vs. non-articulated scattering centers
of T72 tank #a64. Curves are shown both for the
cases where the scattering center locations correspond
within one pixel tolerance and for all the combina-
tions of scatterers whose locations do not match. Fig-
ure 3(b) shows similar results for the con�guration
varian ts.These results demonstrate that for the quasi-
invarian tscattering cen ter locations the magnitudes
are also quasi-invarian t for articulation and con�gura-
tion v arian ts.We have obtained similar results for a
small (2o) change in depression angle.

3 SAR Recognition System
Our invarian t-based recognition systemuses stan-

dard non-articulated models of the objects (at 1o az-
imuth increments) to recognize the same objects in
non-standard and articulated con�gurations. By mod-
eling the object rotations (at 1o intervals), we have a
simplifying special case of geometric hashing [10] with
only translation and con venient in teger buc kets that
correspond to radar range/cross-range bins. In this
approach the relative positions of the scattering cen-
ters in the range and cross-range directions are indices
to a look-up table of labels that giv e the associated
target type and pose. This is an e�cient searc h for
positive evidence that generates votes for the appro-
priate object (and azimuth).

The models and recognition system ha veev olved
from the earlier 2D version [2][8], using only the rel-
ative distances and the `exact' scatterer locations, to
the current 6D version that uses more local features
and accommodate a `within 1 pixel' scatterer location
uncertainty. (The earlier 2D version gave much poorer
results for the MSTAR data than the 6D version [1].)
The detailed 6D model construction and recognition
algorithms are given in [9].

In contrast to many model-based approaches [6] we
are not `searching' all the models; instead we are doing
table look-ups based on relative distances betw een the
strongest scatterers in the test image. We use a local
coordinate system where the origin is the scatterer
used as the basis for computing the relative locations
of the other scatterers. F or ideal dataone could use
the strongest scatterer as the origin, how ever any giv en
scatterer could actually be spurious or missing due to
the e�ects of noise, articulation, occlusion, or non-
standard con�gurations. Thus, we model and use all
the scattering center locations in turn as the origin, so
the size of the look-up table models and the number of
nominal relative distances considered in a test image
is n(n� 1)=2, where n is the n umber of the strongest
scattering centers used.

The o�-line model construction algorithm extracts
these relative distances of the scattering centers from
sets of training data target chips at 1o azimuth in-
crements for each target type. The relative distances
are the indices to a lookup table and, in the 2D ver-
sion, eac h entry in the table is a list of labels that
giv e the appropriate object type and azimuth. In the
6D version the model look-up table labels contain four
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Figure 2: T72 tank scatterer location invariance.
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Figure 3: T72 tank scatterer magnitude invariance.
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additional features: range and cross-range position of
the `origin' and the magnitudes of the tw o scatterers.

Similarly, the on-line recognition algorithm extracts
these relative distances of the scattering centers from
the test data target chips and uses the relativ edis-
tances as indices to access the look-up table. In the
2D version of the recognition algorithm each query of
the look-up table may directly generate votes for one
or more potential candidate solutions. The 2D version
accumulates votes in a 2D object-azimuth space. The
process is repeated with di�erent scattering cen ters
as the origin, providing multiple `looks' at the model
database to handle spurious scatterers that arise due
to articulation, con�guration di�erences, or noise.

The 6D version of the recognition algorithm ex-
tends the basic 2D algorithm by adding additional
features as constraints and accommodates a `within
1 pixel' scatterer location uncertainty. In the 6D ver-
sion, the comparison of the test data pair of scatterers
with the model look-up table result(s) also provides
information on therange and cross-range translation
and the percent magnitude changes for the two scat-
terers. Limits on allow able values for translations and
magnitude changes are usedas constrain ts to reduce
the n umber of false matc hes. V otes are accumulated
in a 4D space: object, azimuth, range and cross-range
translation. T o accommodate some uncertainty in the
scattering center locations, the eight-neighbors of each
nominal range and cross-range relativ e location are
also probed and the results are accumulated for a 3x3
neighborhood in the translation subspace.

The number of scattering centers used and the var-
ious constraint limits are design parameters that are
optimized, based on experiments, to produce the best
recognition results. F or the most di�cult forced recog-
nition case, con�guration varian tsof the T72 and
BMP2, Figure 4 shows the e�ect of the number of
scattering cen ters used on the probability of correct
identi�cation (PCI) and Figure 5 shows the e�ect of
varying the amplitude change limit. The optimum 6D
system parameters for this case are using 36 scatterers,
a translation limit of �5 pixels and a percent magni-
tude change of less than �9%. These same parameter
settings are also used in the articulation and depres-
sion angle change results given in subsequent sections.
(In other work [3 ], adaptive learning methods can be
used to optimize the system parameters.)

T o handle identi�cation with `unknown' objects, we
in troduce a criteria for the quality of the recognition
result (e.g., the votes for the potential winning object
exceed some threshold, vmin). By varying the decision
rule parameter we obtain a form of Receiver Operating
Characteristic (ROC) curve with PCI vs. probability
of false alarm (Pfa).

4 Experimental Results

4.1 F orced recognition results and pose
accuracy

In the articulation experiments the models are non-
articulated versions of T72 tank #a64 and ZSU23/4
#d08 (a radar and an ti-aircraft gun turret on a
tracked v ehicle) and the test data are the articulated
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Figure 4: E�ect of number of scattering centers used
on recognition of MSTAR con�guration di�erences.
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versions of these same serial number objects, all at a
30o depression angle. In the depression angle experi-
ments the models are T72 tank #132 and BMP2 APC
#c21 at a 15o depression angle and the test data are
the same serial number objects at 17o. In both these
experiments the test object and the model are the
same physical object under di�erent conditions and
a PCI of 1.00 was achiev ed for forced recognition with
articulation and 0.993 w asobtained with the 2o de-
pression angle change. In the more di�cult con�gura-
tion varian t experiments, a single con�guration of the
T72 (#132) and BMP2 (#C21) vehicles are used as
the models and the test data are tw o other varian ts of
each vehicle t ype(T72 tanks #812 and #s7, as well
as BMP2 APCs #9563 and #9566), all at a 15o de-
pression angle. F or the con�guration variant cases a
forced recognition rate of 94.7% is achiev ed withthe
6D recognition system (which is a great improvement
over the directly comparable 68.4% rate for the origi-
nal 2D version of the system given in [2]).

Figure 6 illustrates the pose accuracy of the forced
recognition con�guration varian tresults. The top
curve shows that 99% of the time the correct pose was
achieved within �150 (with a 180o fron tvs back di-
rection ambiguity), while the correct object and pose
were achiev ed 94% of the time with the directional am-
biguity and 89% of the time with no ambiguity. Thus,
the di�erences betw een the top and middle curves are
the misidenti�cations, betw een the middle and the
bottom are the cases where the direction is wrong by
180o.

Figure 7 is an example of the e�ect of object oc-
clusion on forced recognition of the BMP2, BTR70,
T72 and ZSU23/4, all at 15o depression angle. Since
there is no real SAR data with occluded objects avail-
able for unrestricted use, occludedtest data is sim u-
lated by starting with a given n umber of the strongest
scattering cen ters and then removing the appropri-
ate number of scattering centers encountered in order,
starting in one of four perpendicular directions cor-
responding to the radar range and cross-range axes.
Then the same number of scattering centers (with ran-
dom magnitudes) are added back at random locations
within the original bounding box of the chip. This
keeps the number of scatterers constant and acts as
a surrogate for some potential occluding object. Our
approach, using simulated occlusion provides an enor-
mous amount of data with varying known amounts of
occlusion for carefully controlled experiments. This
simulated occlusion and noise generate \invalid" scat-
tering cen ters in a con trolledmanner that is similar
to the uncontrolled variations generated by object ar-
ticulation or con�guration variations. Plots of recog-
nition rate versus percent invariance with articulation
or con�guration variants are typically a mirror image
of occlusion plots like Figure 7.

4.2 Confusers and ROC results
Figure 8(a) - (d) sho w scatter plotrecognition re-

sults in BMP2{T72 vote space for con�guration vari-
an ts of the tracked BMP2 APC and the tracked T72
tank and for various confuser vehicles: the wheeled
BTR70 APC #c71, the trackedZSU23/4 gun #d08
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and the wheeled BRDM2 APC #e71. The 45o line in
Figure 8 represents the decision boundary of the sim-
plest decision rule: \the object with the most votes
wins". In this forced recognition case, Figure 8(a),
the overall recognition rate is 94.7%, where 2.3% of the
BMP2s and 9.4% of the T72s are on the `wrong' side of
the boundary and are misidenti�ed. In Figures 8(b) -
(d) the BTR70 APC is the most di�cult confuser,
the BRDM2 APC is somewhat less di�cult and the
ZSU23/4 gun is easy. F or example, Figure 8(b) illus-
trates that 99.6% of the BTR70 confuser false alarms
could be eliminated with a 3000 vote threshold, but
Figure 8(a) shows that a 3000 vote threshold would
eliminate more than half of the BMP2 and T72 iden-
ti�cations. In contrast, Figure 8(d) shows that almost
all of the ZSU23/4 confuser false alarms could be elim-
inated with a 1000 vote threshold without any reduc-
tion in the BMP2 and T72 identi�cations.

R OC curves can be generated from the scatter
plot data in Figure 8 by varying the vote threshold
(from 1000 to 4000 in 50 v ote increments). Figure 9
shows the signi�cant e�ect on the con�guration vari-
ant recognition ROC curves of using the di�erent ZSU,
BRDM and BTR confusers whose scatter plot results
are given in Figure 8. Excellent results are obtained
with the ZSU23/4 gun confuser, while the BTR70
APC is a di�cult case.

Figure 10 shows the ROC curve recognition results
for the articulation, depression angle change and con-
�guration variants cases, all with the 6D system us-
ing the same operating parameters. The ROC curves
in Figure 10 show that the di�erences in con�gura-
tion of an object type are a more di�cult challenge
for the recognition system than small depression angle
changes, since both are generated using the BTR con-
fuser. The excellent results for the articulation case
are basically due to the dissimilarity of the ZSU23/4
gun, T72 tank and BRDM2 APC.

4.3 Integration of multiple recognizers
Instead of tuning the parameters of a single recog-

nizer to achiev e the optimum forced recognition per-
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formance, the results of multiple recognition systems
with di�erent parameters can be in tegrated to pro-
duce a better o verall result. Figure 11 shows the re-
sults of integrating 9 recognizers (operating in a 3x3
neighborhood about the optimum parameters of 36
scatterers and a 9 percent maximum percent magni-
tude change) for the most di�cult case of con�gura-
tion varian ts. The upper R OCcurve, labeled \high
con�dence", represents the combined 90.3% of the T72
tank and BMP2 APC target cases and 70.1% of the
BTR70 APC confuser cases where all 9 of the recog-
nizers agreed. The second curve, labeled \combined
results", represents the overall a verage of all the multi-
ple recognizer results (�ve or more of nine recognizers
agree). It is a signi�cant improvement over the best
single system result, previously shown as the con�gu-
rations result in Figure 10 as well as the BTR result
in Figure 9 and now replotted and labeled as \best
single result" in Figure 11. For example, at a 15%
false alarm rate the combined result of multiple rec-
ognizers is a 79% recognition rate compared to a 65%
rate for the best single recognizer. The \medium con-
�dence" curve represents the 8.4% of the targets and
23.7% of the BTR70 APC confusers where 6 to 8 of
the 9 recognizers agreed. The \low con�dence" curve
represents 1.3% of the targets and 6.2% of the BTR70
APC confusers where only 5 of 9 recognizers agreed.

5 Conclusions and F utureWork
The large variance in SAR scattering center loca-

tion with object pose (azimuth) can be successfully
captured by modeling objects at small (e.g., 1o) az-
imuth increments. The locations and magnitudes of
many scatterers are quasi-invariant with object con-
�guration variations, articulations and small changes
in radar depression angle. A model-based recognition
system, using inexact match of the local features scat-
terer location and magnitude, can successfully han-
dle di�cult conditions with object con�guration vari-
an ts, articulation and occlusion with signi�cant forced
recognition rates and excellent pose accuracy results.
Some of the confuser vehicles are su�ciently similar to
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Figure 8: Scatter plots for 6D system results with con�guration varian ts.
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the objects of interest (e.g., BTR70 APC vs T72 tank
and BMP2 APC) that they pose a muc h more severe
challenge than other confusers (such as the ZSU23/4
gun). The physical di�erences in the con�guration
variant cases are a more di�cult challenge than the
articulation and depression angle cases which involv e
the same physical object. Combining the results of
multiple recognizers can give signi�cantly improved
performance over the single best recognizer.

The current w ork, which implicitly relies on the
dissimilarity betw een di�erent objects and on the in-
variance of the same object to changing conditions,
can be extended to explicitly determine and utilize
these measures for increased recognition performance.
One approach is to explicitly discount model similar-
ity betw een objects, as measured by feature space col-
lisions. The intuition is that \ambiguous" features
should be discounted. Another approach is to explic-
itly promote features that are invariant with changing
conditions (e.g., con�gurations, articulations or small
pose changes). Here the intuition is that the invariant
features are more \reliable" and should be promoted.
We plan to explore these ideas in the future.
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