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Abstract

Using SAR scattering center locations and magni-
tudes as features, invariances with articulation (i.e.,
turret rotation for the ZSU 23/4 gun and T72 tank),
with configuration variants (e.g. fuel barrels, search-
lights, etc.) and with a depression angle change
are shown for real SAR images obtained from the
MSTAR public data. This location and magnitude
quasi-invariance forms a basis for an innovative SAR
recognition engine that successfully identifies real ar-
ticulated and non-standard configuration vehicles based
on non-articulated, standard recognition models. Iden-
tification performance results are given as confusion
matrices and ROC curves for articulated objects, for
configuration variants, and for a small change in de-
pression angle.

1. Introduction

In this paper we are concerned with the problem of
recognizing articulated vehicles and actual vehicle con-
figuration variants in real SAR images. Previous work
on recognizing articulated objects in visual imagery [1]
[4] used simple objects (like scissors and lamps) and
employed constraints around a joint to recognize these
objects. Because of the unique characteristics of SAR
image formation (specular reflection, multiple bounces,
low resolution and non-literal nature of the sensor), it
is difficult to extract linear features (commonly used
in visual images), especially from subcomponents of
vehicle size objects in SAR images at one foot resolu-
tion. Prior recognition methods for SAR imagery using
templates [9] [10], are not well suited for recognition of
articulated objects, because each different articulation
configuration requires a different template leading to
a combinatorial explosion. Prior detection theory [3],

pattern recognition [10], and neural network [11] ap-
proaches to SAR recognition all tend to use global fea-
tures that are optimized for standard, non-articulated,
non-occluded configurations, however, articulation and
occlusion often change global features (e.g. the object
outline and major axis).

Our approach to object recognition is specifically
designed for SAR images. In contrast to passive vi-
sion systems, the scale of the image is fixed in SAR
by characteristics of the radar. However, where optical
images are mainly formed as a result of diffuse reflec-
tions from a noncoherent source of light, SAR images
are formed primarily from specular reflections from a
coherent source; they are non-literal and vary quickly
and abruptly with small pose angle variations. Because
of the high SAR image variance with object pose, or
azimuth (the radar depression angle to the target is
known), we use 360 azimuth models at 1° intervals of
each object in a standard non-articulated configuration
for recognizing articulated and non-standard versions
of these same objects (in contrast to others who have
used 5° to 10° intervals [5] [10] for recognizing standard
non-articulated objects). The peaks (local maxima) in
radar return are related to the physical geometry of
the object. The relative locations of these scattering
centers are independent of translation and serve as dis-
tinguishing features.

We approach the problem of recognizing articulated
and occluded objects from the fundamentals of SAR
images. We identify (and measure) the invariance of
SAR scatterer locations and magnitudes with object
articulation, configuration variants and a small change
in depression angle. Based on these invariants, we de-
velop a SAR specific recognition system that uses stan-
dard non-articulated recognition models to success-
fully recognize articulated and non-standard versions
of these objects. The SAR recognition engine has an
off-line model construction phase and an on-line recog-
nition process. The recognition model is basically a



look-up table that relates relative distances among the
scattering centers (in the radar range and cross range
directions) to object type and azimuth. The recogni-
tion process is an efficient search for positive evidence,
using relative locations of scattering centers in the test
image to access the look-up table and generate votes for
the appropriate object, pose (azimuth) and translation.
The approach accomodates a ‘within one pixel’ uncer-
tainty in the locations of the scattering centers. A con-
straint on allowable percent change in the magnitudes
of the data and model scattering centers is used to help
filter out false matches. Identification performance re-
sults are given as confusion matrices and ROC curves
for articulated objects, for configuration variants, and
for a small change in depression angle.
The key contributions of this paper are:

1. Demonstrates that quasi-invariant scattering cen-
ter locations exist and that their magnitudes are
also quasi-invariant for (a) articulation; (b) config-
uration variants; and (c) a depression angle change
for actual vehicles in real SAR data.

2. Develops a new recognition engine based on scat-
tering center location and magnitude features
that achieves significant vehicle recognition perfor-
mance for articulation, configuration variants and
depression angle changes with real SAR data.

2. Scatterer Location Invariance

The relative locations of SAR scattering centers, de-
termined from local peaks in the radar return, are re-
lated to the aspect and physical geometry of the object,
independent of translation and serve as distinguishing
features. Photo images of typical MSTAR targets: T72
tank serial number (#) a64 and ZSU 23/4 antiaircraft
gun #d08, are shown in Figures 1 and 2, both with the
turret in the straight forward and articulated positions.
Regions of interest (ROI) are found in the MSTAR
SAR target chips by reducing speckle noise using the
Crimmins algorithm in Khoros [7], thresholding at the
mean plus two standard deviations, dilating to fill small
gaps among regions, eroding to have one large ROI and
little regions, discarding the small regions with a size
filter and dilating to expand the extracted ROI. The
scattering centers are extracted from the SAR mag-
nitude data (within the boundary contour of the ROI)
by finding local eight-neighbor maxima. Example SAR
images and the regions of interest (ROI), with the loca-
tions of the scattering centers superimposed, are shown
in Figure 3 for baseline (turret straight) and articu-
lated (turret at 315°) versions of the ZSU 23/4. Be-
cause the object and ROI are not registered, we express

(a) turret straight.

(b) turret articulated.

Figure 1. T72 tank #a64.

the scattering center location invariance with respect
to articulation, configuration differences or depression
angle changes as the maximum number of correspond-
ing scattering centers (whose locations match within a
stated tolerance) for the optimum integer pixel trans-
lation.

Given an original version of a SAR target image with
n scattering centers, represented by points at pixel lo-
cations P; = (z;,y;) for 1 < i < n and a translated,
distorted version P} = (z},y}) (1 <j < n) at a trans-
lation t = (., t,), we define a match between points P]
and P; as:

L if [2) — ¢, —2;] <1 and

|y;‘_ty_yi| <l
0 otherwise

M;;(t) =

where [ = 0 for an ‘exact’ match and [ = 1 for a match
‘within one pixel’.



(a) turret straight. (b) turret articulated.

Figure 2. ZSU 23/4 gun #d08.
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(c) articulated image. (d) articulated ROLI.

Figure 3. MSTAR SAR images and ROls (with peaks shown as +) for ZSU 23/4 gun #d08 at

azimuth.

66° hull



articulated ZSU 23/4 gun #d08 (40 scattering centers)
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Figure 4. Articulated ZSU 23/4 gun scatterer
location invariance.

The scatterer location invariance, L,, of n scatter-
ers, expressed as a percentage of matching points, is
given by:

100 & .
Ln:m?,x TZ}mm E;M”(t) ,1
j= i=

where each point P]f is restricted to at most one match.
Figure 4 shows the location invariance, L4g, of the
strongest 40 scattering centers with articulation for
MSTAR ZSU 23/4 #d08 (at a 30° depression angle)
as a function of the hull azimuth. The average invari-
ance is 15.7% for an exact match of scattering centers
and 55.1% for a location match within a one pixel (3x3
neighborhood) tolerance. Similarly, Figure 5 shows the
percent of the strongest 40 scattering center locations
that are invariant for BMP2 vehicle #C21 vs. #9563
(at a 15° depression angle). Figure 6 shows the percent
scattering center location invariance for BMP2 #C21
at 17° vs. 15° depression angles. The mean and stan-
dard deviation for percent location invariance (for 40
scatterers, and depression angle ¢) are shown in Table
1 for articulated versions of the T72 and ZSU 23/4, for
configuration variants of the T72 and BMP2 and for
depression angle changes with the T72 and BMP2.
The mean 17.17% exact match location invariance
with articulation for the real MSTAR T72 #a64 (at one
foot resolution) is significantly less than the compara-
ble 46.6% invariance (reported by Jones and Bhanu [6])
for T72 SAR signatures generated with the XPATCH
radar signature prediction code at six inch resolu-
tion. Similarly, the two real articulated objects in
the MSTAR data had an average 16.45% location in-
variance in Table 1, compared with a 49% invariance

BMP2 vehicles #C21 and #9563 (40 scattering centers)
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Figure 5. BMP2 scatterer location invariance
with configuration (#C21 vs. #9563).
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Table 1. Scatterer percent location invari-
ance for MSTAR targets with articulation,
configuration variants and depression angle

changes.
exact match within 1 pixel
dep. invariance invariance
angle mean | s. d. mean s. d.
articulation:
T72 #a64 30 17.17 1.47 57.83 2.23
ZSU #dos8 30 15.69 0.91 55.05 1.72
average 16.45 56.47
configuration variants:
T72: #812 vs #132 15 15.34 0.89 55.34 1.91
#8T vs #132 15 15.40 0.83 56.68 1.95
BMP2: #9563 vs #c21 15 16.34 0.84 58.52 1.97
#9566 vs #c21 15 16.17 0.99 57.93 1.97
average 15.83 57.15
depression angle:
T72 #132| 17-15 17.76 1.52 61.55 2.05
BMP2 #c21| 17-15 17.19 1.23 61.31 2.11
average 17.47 61.43




for four XPATCH generated articulated objects (at six
inch resolution).

3. Scatterer Magnitude Invariance

Using a scaled scatterer amplitude (S), expressed
as a radar cross section in square meters, given by S
=100 + 101log,,(i® + ¢*), where i and ¢ are the compo-
nents of the complex radar return, we define a percent
amplitude change (A4,;) as: Aj, = 100(S; — Sk)/S;.
(This form allows a larger variation for the stronger sig-
nal returns.) A location and magnitude match Qi (t)
is given by:

Qult) = {

where [4 is the percent amplitude change tolerance.
The scatterer magnitude and location invariance (I,,),
expressed as a percentage of n scatterers, is given by:

1 if Mjk(t) =1 and |A]k| S lA
0 otherwise

100 .
In:m?,x 7;1’11111 E;Q]k(t) ,1
o= Jj=

Figure 7 shows the probability mass functions
(PMFs) for percent amplitude change for the strongest
40 articulated vs. non-articulated scattering centers
of ZSU 23/4 #d08. Curves are shown both for the
cases where the scattering center locations correspond
within a one pixel tolerance and for all the combina-
tions of scatterers whose locations do not match. For
the cases with locations that matched within 1 pixel,
the percent amplitude change mean and standard devi-
ation are 0.06 and 7.44, while the non-matching cases
are 0.08 and 11.37 respectively. The crossover points
of the two curves are at + 9 percent. Similarly, Fig-
ure 8 shows the PMFs for percent amplitude change
for the strongest 40 scattering centers of BMP2 #C21
vs. #9563 (at a 15° depression angle), while Figure 9
shows this for 17° vs. 15° degrees depression angle (for
BMP2 #C21). The mean and standard deviation for
these matching and non-matching scatterers and the
crossover points for the PMFs are given in Table 2.
Table 3 shows the mean and standard deviation for
the percent location and magnitude invariance (within
a 1 pixel location tolerance and an amplitude change
tolerance of [ 4) of the strongest 40 scatterers for these
same articulation, configuration difference and depres-
sion angle change cases.

4. SAR Recognition Engine

The SAR recognition engine uses standard non-
articulated models of the objects (at 1° azimuth incre-

articulated ZSU 23/4 gun #d08 (40 scattering centers)
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Figure 7. ZSU 23/4 scatterer percent ampli-
tude change with articulation.

BMP2 vehicles #C21 and #9563 (40 scattering centers)
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Figure 8. Example BMP2 scatterer percent
amplitude change with configuration (#C21

vSs. #9563).



BMP2 #C21, 17 vs 15 degrees (40 scattering centers)
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Figure 9. BMP2 scatterer percent amplitude
change with depression angle  17° vs. 15°.

Table 2. Scatterer percent amplitude change
for MSTAR targets with articulation, con-
figuration variants and depression angle
changes.

within 1 pixel no match
mean s. d. mean s. d. Xx-over
articulation:
T72 #a64 .51 5.91 .75 10.44 -5/46
ZSU #d08 .06 7.44 .08 11.37 +9
configuration variants:
T72: #812 vs #132 .15 7.29 -.38 11.12 +8
#8T vs #132 .48 6.69 2.20 11.15 +9
BMP2: #9563 vs #c21 .35 5.72 .94 10.88 -8/49
#9566 vs #c21 .48 6.20 .56 10.68 -7/+8
depression angle:
T72 #132 .43 4.66 .84 10.45 -7/48
BMP2 #c21 .37 4.65 1.53 10.91 -7/48

Table 3. Scatterer percent location and magni-
tude invariance (for locations within one pixel
and amplitude tolerance 1a).

lg | mean | s. d.
articulation:
T72 #a64 || £9 | 53.47 | 2.63
ZSU #d08 || £9 | 47.98 | 2.22
average 50.78
configuration variants:
T72: #812 vs #132 || £9 | 48.40 | 2.42
#s7 vs #132 || £9 | 50.69 | 2.44
BMP2: #9563 vs #c21 || £9 | 54.38 | 2.34
#9566 vs #c21 || £9 | 53.00 | 2.51
average 51.68
depression angle:
T72 #132 || £7 | 56.15 | 2.38
BMP2 #c21 || £7 | 55.66 | 2.53
average 55.91

ments) to recognize the same objects in non-standard,
articulated and occluded configurations. The current
6D model-based SAR recognition engine, described
here, is an outgrowth of our earlier 2D SAR engine
(that approach only used the relative locations; it did
not determine the appropriate translation or utilize the
magnitude information). The model construction al-
gorithm is outlined in Figure 10 and the recognition
algorithm is given in Figure 11. Using a technique like
geometric hashing, [8] the relative positions of the scat-
tering centers in the range (R) and cross-range (C) di-
rections are the (initial 2D) indices to a look-up table of
labels that give the associated target type/pose and the
remaining 4D features: range and cross-range position
of the ‘origin’ and the magnitudes of the two scatter-
ers. (The ‘origin’ is the strongest of a pair of scatter-
ers, the other is a ‘point’.) In comparing the test data
with the model, the additional 4D information provides
results on the range and cross-range translation and
the percent magnitude changes for the two scattering
centers. The number of scattering centers used, the
limits on allowable translations and the limits on al-
lowable magnitude changes are design parameters that
are optimized, based on experiments, to produce the
best forced recognition results.

The recognition process is an efficient search for pos-
itive evidence, using relative locations of scattering cen-
ters to access the look-up table and generate votes for
the appropriate object, azimuth, range and cross range



1. For each model Object do 2

2. For each model Azimuth do 3, 4, 5

3. Obtain the location (R,C) and magnitude (S) of the
strongest M scatterers.

4. Order (R, C, S) triples by descending S.

5. For each origin O from 1 to M do 6

6. For each point P from O+1 to M do 7, 8

7. dR =Rp — Ro; dC = Cp — Co.

8. At look-up table location dR,dC append to list entry
with: Object, Azimuth, Ro, Co, So, Sp.

Figure 10. Model construction algorithm

1. Obtain from test image the location (R,C’) and magni-
tude (S) of M strongest scatterers.

2. Order (R, C,S) triples by descending S.

. For each origin O from 1 to M do 4

. For each point P from O+1 to M do 5, 6

dR = Rp — Ro; dC = Cp — Co.

For DR from dR-1 to dR+1 do 7

For DC from dC-1 to dC+1 do 8, 9, 10

. weighted_vote = |DR| + |DC|.

9. Look up list of model entries at DR, DC.

10. For each model entry F in the list do 11

11. IF |tr = Ro — Rg| < translation_limit and |tc =
Co — Cg| < translation_limit

and |1 — SEo/So| < magnitude_limit and |1 — SEP/SP| <
magnitude_limit

THEN increment accumulator array [Object, Azimuth, tr,
tc] by weighted_vote.

12. Query accumulator array for each Object, Azimuth, tr
and tc, summing the votes in a 3x3 neighborhood in trans-
lation subspace about tr, tc; record the maximum vote_sum
and the corresponding Object.

13. IF maximum vote_sum > threshold

THEN result is Object ELSE result is “unknown”.

© NS w

Figure 11. Recognition algorithm

Table 4. Example MSTAR articulated object
confusion matrix (38 scatterers,  +£9% ampli-
tude tolerance, 2100 vote threshold).

Identification results
[non-articulated models]
T72 | 7ZSU | unknown

MSTAR (Public)
articulated
test targets

T72 3159 turret || 98 0 0
ZSU 315 turret 0 92 2
BRDM2  (confuser) 32 0 222

translation. A (city-block) weighted voting method is
used to reduce the impact of the more common small
relative distances. To accommodate some uncertainty
in the scattering center locations, the eight-neighbors
of the nominal range and cross-range relative location
are also probed and the translation results are accu-
mulated for a 3x3 neighborhood in the translation sub-
space. The process is repeated with different scattering
centers as reference points, providing multiple ‘looks’
at the model database to handle spurious scatterers
that arise due to articulation, occlusion or configura-
tion differences.

To handle identification with ‘unknown’ objects, we
introduce a criteria for the quality of the recognition
result (e.g. the votes for the potential winning object
exceed some threshold, vp,:,). By varying the decision
rule parameter (typically from 1000 to 4000 votes in
50 vote increments) we obtain a form of Receiver Op-
erating Characteristic (ROC) curve with probability
of correct identification (PCI) vs. probability of false
alarm (PFA).

5. Recognition Results
5.1. Articulated Object Results

Table 4 shows recognition results for articulated ver-
sions of the T72 #a64 and ZSU23/4 #d08 at 30°
depression angle, using the non-articulated versions
of these same serial number objects as the models
and BRDM2 #e71 as an “unknown” confuser vehicle.
These results, 0.990 PCI at 0.126 PFA, are obtained
using a 2100 vote decision criterion with 38 scatterers
and with a £9 percent amplitude change limit. (The
overall forced recognition rate is 100% over a range
from 14 to 40 scattering centers.) For the conditions in
Table 4, varying the vote threshold results in the ROC
curve shown in Figure 12.
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Figure 12. Receiver Operating Characteristics
for recognizing MSTAR articulation.

5.2. Configuration Variant Results

Table 5 shows a typical forced recognition confusion
matrix for configuration variants in the MSTAR data
at 15° depression angle, using a single configuration
as the model (BMP2 #C21 and T72 #132) and test-
ing with two other variants of each vehicle type. Al-
though more extensive T72 configuration variant data
is available, only two configurations are used so that the
amount of test data for the T72 and BMP2 is compa-
rable and the results are not artificially biased toward
recognizing the T72. The optimum forced recognition
result is an overall rate of 94.7%, obtained at 36 scat-
tering centers with a translation limit of +5 pixels and
a percent magnitude change of less than +9 percent.
(The 94.7% rate for this 6D recognition engine is di-
rectly comparable to the 68.4% rate for the prior 2D
version of the recognition engine.) The effect on PCI
of the number of scattering centers used is shown in
Figure 13 (for I4 = 9) and Figure 14 shows the effect
of varying the amplitude change limit (for 36 scatter-
ing centers). Using the BTR70 #c71 as an “unknown”
confuser, for the optimum conditions given above, re-
sults in the ROC curve shown in Figure 15.

The effect of scatterer location and magnitude in-
variance on the forced recognition rate for configuration
differences of the T72 and BMP2 is shown in Figure 16,
based on the 22 failures in 415 tests shown in Table 5.
(The two cases of perfect recognition below 35% are
each a single instance with no failure.) These results
with actual SAR data for the 6D recognition engine
show over 90% recognition for location and magnitude
invariance (within one pixel and an amplitude change
tolerance of 9%) values down to 41.7%, compared to

Table 5. Forced recognition confusion matrix
for MSTAR configuration variants (36 scatter-
ers, +9% amplitude tolerance).

MSTAR (Public)
test targets
[serial number]

Identification results
[configurations modeled]
BMP2 [#CQIH T72 [#132]

BMP2 [#9563] 106 (98.1%) 2

BMP2 [#9566] 107 (97.2%) 3
T72  [#812] i1 92 (39.3%)
T72 [#5S7] 6 88 (93.6%)

(9 percent amplitude change limit)
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Figure 13. Effect of number of scattering cen-

ters used on recognition of MSTAR configu-
ration differences.

the prior results [6] for the 2D engine with simulated
SAR data (at six inch resolution) where the recognition
rate drops sharply below 40% invariance for an exact
match of locations.

5.3. Depression Angle Change Results

Table 6 shows the confusion matrix for recognizing
T72 (#132) and BMP2 (#c21) at a 17° depression an-
gle using models with the same serial numbers at a 15°
depression angle and using BTR70 #c71 as an “un-
known” confuser. These results, 0.855 PCI at 0.129
PFA, are obtained using a threshold of 2100 votes with
34 scatterers and with an amplitude change limit of
+7%. (The forced recognition rate is greater than 90%
over a range of from 13 to at least 40 scatterers with
the best forced recognition, 99.6%, at 34 scatterers with
a £7% amplitude change limit.) The ROC curve for
these depression angle changes is shown as Figure 17.
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Table 6. Example confusion matrix for MSTAR
depression angle changes (34 scatterers,
+7% amplitude tolerance, 2100 vote thresh-

old).

MSTAR (Public)
depression angle
17° test targets

Identification results
[15° models]

BMP2 | T72 | unknown

BMP2  [#c2] 117 | 0 21
T72 #132 1 119 18
BTR70 (confuser) 10 20 202

T72 and BMP2 configurations (36 scattering centers)
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6. Conclusions and Future Work

A significant percentage (56.5 - 61.4%) of the SAR
scattering center locations are quasi-invariant (within
a 3x3 pixel tolerance) for object articulation, configu-
ration differences and small depression angle changes.
The magnitudes of these quasi-invariant scatterers (ex-
pressed as a radar cross section) typically change by
less than +10%. The positions and magnitudes of
pairs of these quasi-invariant scatterers are used in a
6D recognition engine to achieve good recognition re-
sults with real SAR data for object articulation, config-
uration differences and small depression angle changes.
While these three problems are similar, the differences
among configurations of an object type are a more
significant challenge for recognition than articulation
and depression angle changes, where the model and
test data are the same physical object under different
conditions (as seen by comparing the ROC curves in
Figure 15 with Figures 12 and 17). These recognition
results are a substantial improvement over the perfor-
mance of the earlier 2D recognition approach with real
SAR data [2]. Future work to incorporate additional
features in the recognition engine should lead to further
performance improvements and accomodate combined
cases such as configuration variants along with depres-
sion angle changes.
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