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Abst rack 
W e  present a novel method f o r  predicting the per- 

formance of a n  object recognition approach in the pres- 
ence of data uncertainty, occlusion and clutter. The  
recognition approach uses a vote-based decision crite- 
rion, which selects the object/pose hypothesis that has 
the m a x i m u m  number of consistent features (votes) 
with the scene data. The  prediction method deter- 
mines a fundamental,  optimistic, limit o n  achievable 
performance by any vote-based recognition system. It 
captures the structural similarity between model ob- 
jects, which is  a fundamental factor  in determining 
the recognition performance. Given a bound o n  data 
uncertainty, we determine the structural similarity be- 
tween every pair of model objects. This is done by 
computing the number of consistent features between 
the two objects as a funct ion of the relative trans- 
formation between them. Similarity information is  
then used, along with statistical models f o r  data distor- 
tion, t o  estimate the probability of correct recognition 
( P C R )  as a funct ion of occlusion and clutter rates. 
The  method is  validated by comparing predicted PCR 
plots with ones that are obtained experimentally. 

1 Introduction 
Model-based object recognition is a central problem 

in image analysis. It can be defined as follows: Given 
a set of model objects and scene data provided by a 
sensor observing one of these objects, the objective 
is to determine identity and pose of the scene object. 
Object recognition involves extracting features from 
the scene data and finding consistent correspondence 
between scene features and those of a model object. 
Accordingly, performance of this process depends on 
properties of both the scene data (e.g., measurement 
error, missing and spurious features) and the model 
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objects (e.g., articulation of object parts, objects hav- 
ing similar subparts). Modeling all these factors is a 
challenge for predicting the recognition performance. 

We present a method for predicting the probability 
of correct recognition (PCR) by considering: 1) Scene- 
Data Factors: data uncertainty (due to measurement 
error), occlusion (missing scene-object features), and 
clutter (spurious scene features), and 2) Model Fac- 
tors: the structural similarity between model objects. 
The model similarity factor is fundamental for de- 
termining the recognition performance. Intuitively, 
the probability of failing to recognize an object, in 
a distorted scene, is directly proportional to the de- 
gree of similarity between this object and the rest of 
the model objects. We assume that model objects 
and scene data are represented by 2-D point features, 
where each feature is represented by its positional in- 
formation. Further, we assume that the decision cri- 
terion is vote-based; i.e., the object/pose hypothesis 
with the maximum number of consistent features is 
selected as the valid one. 

Related research efforts consider model similarity, 
data uncertainty, and occlusion [l], or model similar- 
ity, data uncertainty, and clutter [2] .  Other relevant 
efforts address the problem of discriminating an ob- 
ject from random clutter (e.g., [3]). The problem of 
predicting PCR as a function of data uncertainty, oc- 
clusion, clutter and model similarity, which is the fo- 
cus of this paper, has not been adequately addressed 
in the field. 

2 Approach 
Our performance prediction problem can be stated 

as follows: Given 1) a set of model objects, M = 
{ M i } ,  2 )  statistical models for scene-data distortion 
(uncertainty, occlusion and clutter), and 3) a class of 
applicable transformations, 7 (e.g., translation, rigid, 
affine), our objective is to  predict the PCR plot as 
a function of occlusion and clutter rates, assuming 
a fixed amount of data uncertainty. The proposed 
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method can be outlined as follows. Firstly, for each 
model object, M i  E M ,  we compute the structural 
similarity between M i  and every model object M j  E 
M ( j  may be equal to i ) .  The similarity between M i  
and M j ,  which is simply the number of consistent fea- 
tures, is computed as a function of the transformation 
of M j  relative to Mi.  Secondly, given model similar- 
ity information, obtained in the first step, and specific 
occlusion and clutter rates, we compute the probabil- 
ity of correctly recognizing each model object. Taking 
the average PCR for all model objects and repeating 
the process for a variety of occlusion and clutter rates, 
we can predict the PCR plot. 

The major issues involved in our method are dis- 
cussed in the remainder of this section. 

1) Data Distortion Models: We model data dis- 
tortion as follows: I )  Data Uncertainty: The actual 
location of a scene feature is assumed to be uniformly 
distributed within a circle of radius e ,  which is cen- 
tered at the estimated feature location. 2) Occlusion: 
we assume that each feature subset of M i  is equally 
likely to be occluded as any other feature subset that 
is of the same size. 3) CZutter: Clutter features are 
assumed to be uniformly distributed within some area 
surrounding the object. 
2) Model Similarity: The similarity between M i  
and M j  is a function of the relative transformation 
between them. Let us refer to an instance of M j  at 
location 7 E 7 relative to M i  as M J .  The similarity 
between M i  and M J ,  &(Mi ,  M J ) ,  is defined as the 
expected number of votes that M ;  would get, given un- 
certain scene data of Mi.  We determine S, (Mi ,MJ)  
as follows. Feature/feature similarity, FFS,(Fik, F;), 
between features Fik E M i  and F; E M i  is defined 
as the probabality that an uncertazn measurement of 
Fik i s  consistent with F’.. In our work, a pair of scene 
and model features are considered consistent, if they 
lie within a distance of e .  Thus, 

where R, (F)  is the uncertainty region associated with 
feature F ,  a circle of radius e that is centered at F ,  
and A(R) is the area of region R. Thus, the similarity 
between Fik and F; is proportional to the intersec- 
tion area of the respective uncertainty regions, as il- 
lustrated in Figure l. The similarity between M i  and 
MI can be defined as follows: 

& ( M i , M J )  3 L ( x x F F & ( F i k , F ’ ) )  +0.5J. 

The above equation is approximate because it assumes 
k 1  

Figure 1: The similarity between Fir~ and F’ is pro- 
portional to the intersection area of the respective un- 
certainty regions (the shaded region). 

Figure 2: An illustration of one-to-one correspondence 
between similar features in M i  and M J .  

one-to-one correspondence between similar scene and 
model features, which are those with overlapping un- 
certainty regions (see Figure 2). 
3) Effects of Data Distortion and Model Sim- 
ilarity on Recognition Performance: Figure 3 
shows a schematic diagram of M i  and M3,  showing 
similar and dissimilar features in both objects. The 
intersection region denotes the similar features in M i  
(Mi j )  or M I  ( M & ) ,  while the other regions denote 
dissimilar features in Mi ( M y j  = M i / M i j ) ,  and 
M J  (M;@ = M3/MJi) .  To simplify both the pre- 
sentation in this section and the probabilistic analysis 
in the next section, we assume that the intersection 
region corresponds to S, ( M  i, M I )  features that are 
fully similar, i.e., FFS,(. ,  e )  = 1. 

A distorted image of M i  is falsely interpreted as 
M i ,  if M J  gets more votes than Mi.  The probability 
of false recognition increases as: 1) Features in Mi/ j ,  
which distinguish M i  from M;,  start to get occluded, 
2) clutter features happen to coincide with those in 
M;,i, 3) the size of the intersection area increases, due 

Figure 3: A schematic diagram of M i  and M i .  
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Figure 4: Vote variables for M i  and M i ,  shown at 
the center of their corresponding regions. 

to the similarity between the two objects, as well as 
the increase in the amount of data uncertainty. Notice 
that, in our vote-based scheme, neither occlusion nor 
clutter in the intersection area has any effect on the 
performance of recognition, since the vote difference 
between M i  and M i  would stay the same. 

3 Performance Estimation 
In this section, we estimate the probability of cor- 

rectly recognizing M i  in a distorted image, D~(E ,o ,  c), 
where E is the radius of data uncertainty, o is the num- 
ber of occluded features of M i ,  and c is the number of 
clutter features. We start by assuming that M i  can 
be falsely recognized as only one object instance, M i ,  
and then we consider the general case. 

1) Single-Instance Case: Let F,(Mk;Dl) be the 
set of features of image 'Dl that are consistent with 
hypothesis M k ,  and K(Mk;Dl )  the number of votes 
for M k ,  given DL. If there is one-to-one correspon- 
dence between consistent scene and model features, 
then V,(Mk;Dl) =I Fc(Mk;Di) I. Further, let Oi be 
the set of occluded features of M i  in D~(E,o ,c )  (no- 
tice that I Oi I= 0). The probability of misinterpreting 
Vi(€,  0, c) as M i  can be written as 

Pr[Mi; Di(e, 0, c)] = 

Pr[K(Mi;Q(c,o, C)) 2 K(Mi;Di(c,o,~))I.(1) 

It can be shown that the votes for M i  and M i  are 

K(Mi;Di (~ ,o , c ) )  = 1 M i  1 - o + X ,  and 
K(Mj7; D ~ ( E ,  O, c)) = Y + Z 

where X, Y ,  and 2 are random variables that are de- 
fined as follows: l )  X = V,(O~;DZ)~(E, 0, c)),  the number 
of votes for Oi due to coincidence with clutter features 
of Di(c,o,c) ,  2) Y = V,(MJ;FE(Mi,Di(~,o,c))), the 
number of votes for M J  due to the similarity with 
M i ,  and 3) 2 = K(M;;Di(€,o,c))  - Y ,  the number 
of votes for M i  which are not due to the similarity 
with Mi.  These variables are illustrated in Figure 4. 

We determine the probability distribution functions 
(PDF's) of X ,  Y ,  2, and the votes for M i  and MjT 
based on the statistical data-distortion models out- 
lined in the previous section. Let us first determine 
the PDF describing X and 2. Given m model fea- 
tures and n clutter features, the probability that U 

model features are consistent with clutter features is 
bounded by [Gu(u; m, n, 0) ,  Gu(u; m, n, l)] where 

Gv(u;m,n,p) = 

C(a,b) = 6, P(a,b) = a - b !  ' and I is the 
clutter area. Since we are interested in determining 
an optimistic estimate of PCR, we use the upper and 
lower bounds for describing X and 2, respectively. 

Next, let us determine the PDF of Y .  Since we are 
assuming that all feature subsets of M i ,  of the same 
size, are equally likely to be occluded, it can be shown 
that Y is described by a hypergeometric distribution, 

HY(V;S,(Mi,M;),u,I Mi I-.) 
where U = K(Mi;Di(c,o,c)) and 

C(a, u)C(b, n - U )  

C(a + b, n) . H v ( v ;  n, a ,  b) = 

It is easy to show that the PDF of the vote count 
for M i  is 

Pr[V,(Mi; D ~ ( E ,  0, c ) )  = U] = Gx(v- I Mi I +o; 0, c, l), (2) 

while that for M ;  is 

Pr[VE(Mj7;Di(E,o,c),u) = w] = 

CHY(y;S , (Mi ,Mj7) ,u , I  M i  I -U)  x 

Gz(v-y; I  M i  I - ~ , c - u -  I Mi I +0,0) (3) 
Y 

where K ( M 3 ;  D ~ ( E ,  0, c), U )  is the number of votes for 
M i ,  assuming that M i  has U votes. 

From (l), (2) and (3), we determine the probability 
of misinterpreting Di(c, 0, C )  as M;: 

Pr[MJ;Di(e,o,c)] = CPr[V,(Mi;Di(t,o,c)) = 211 x 
U 

CPr[V,(MJ;Di(t,o,c),21) = 4. 
U& 

2) General Case: Now, we consider the general case, 
where a distorted scene of M i  can be misinterpreted 
as any M J ,  QMj  E M ,  and Qr E 7, except for a small 
window around the origin of 7 when j = i. Clearly 
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this case is much more difficult, since Mi can be mis- 
interpreted as an infinite number of possible object 
instances. Discretization appears to be a necessary 
approach in order to facilitate the PCR estimation 
process. One possibility is to discretize the transfor- 
mation space 7 at some fine resolution, and consider 
object instances at the sampling points only. The 
main problem with this approach is the vote depen- 
dence between adjacent instances, which would signif- 
icantly complicate the analysis. In order to overcome 
this problem, we select object instances that corre- 
spond to the peaks of the similarity function. The 
rationale behind this choice can be stated as follows: 
1) Peaks are generally not very close to each other and 
so the vote independence assumption (or more accu- 
rately, the conditional vote independence assumption, 
see below) becomes reasonable. 2) The probability 
that an off-peak instance, M;", gets more votes than 
the neighboring peak instance, M J ,  is small. This is 
because of the high overlappin between the uncer- 
tainty regions of MJ and Mi+', for smaller 6's, and 
the lesser number of similarity votes (votes due to sim- 
ilarity with M i )  for for larger 6's. The conse- 
quence of using only peak instances in the analysis is 
producing an optimistic PCR. 

Let { M J }  be the set of peak object instances for 
model object Mi.  The probability of correctly recog- 
nizing M i  can be written as follows: 

U 

n(1 - p r [ & ( M J ; D i ( € , o , c ) , ~ )  2 U ) ] .  (4) 
j 

Notice that we assume conditional vote independence 
in the above equation. Since the probability of mis- 
interpretation to a particular instance depends on in- 
stance size, and number of similar features only, we 
can rewrite (4) as 

n s  

where P(u; n, s) = Pr[V,(M;; D;(E, o, c ) ,  U )  1 U ] ,  as- 
suming that I M J  [= n, S , (Mi ,MJ)  = s, and 
Ni(n, s) is the number of peak object instances of size 
n and similarity size s. The PCR can be estimated by 
evaluating (5) for each model object and taking the 
average. A linear approximation of ( 5 )  is used in the 
implementation, to avoid computing it for each object 
separately. 

(a) T72 (b) BMP2 (c) BTR 
Figure 5:  Examples of target views. 

4 Experimental Results 
In this section, we consider the task of recogniz- 

ing targets in Synthetic Aperture Radar (SAR) im- 
ages, in order to experimentally validate our predic- 
tion method. 

1) Model Data: Each model target is represented by 
a number of SAR views which sample its signature at a 
specific depression angle (ed ) ,  and a variety of azimuth 
angles. The model data,base consists of views corre- 
sponding to three targets: T72 (231 views), BMP2 
(233 views) and BTR (233 views) at e d  = 17". Ex- 
amples of these views are shown in Figure 5. Each 
view is treated as an independent object for recogni- 
tion purposes. In our case, the space of applicable 
transformations is 2-D translation in the image plane 
[4]. Scattering centers, peaks in the image, are used 
as point features for recognition. These peaks are ex- 
tracted by comparing the value of each pixel with its 
eight neighbors. We have chosen the strongest 30 scat- 
tering centers to represent both model and scene data. 
Since we are considering a fixed number of scattering 
centers, the occlusion and clutter rates in an image 
are always the same. 
2) Test Data: Test data are obtained by selecting a 
number of target views, and introducing distortion to 
these views as follows: 1) Data Uncertainty: The lo- 
cation of each peak is randomly perturbed such that 
the distance between the new peak and the original 
one is smaller than a desirable radius of data uncer- 
tainty, E .  The new peak is then quantized to coincide 
with a pixel location. 2) Occlusion: A feature is ran- 
domly eliminated along with a number of its nearest 
neighbors, depending on the desired occlusion rate. 3) 
Clutter: A number of features, depending on the de- 
sired clutter rate, are randomly generated within the 
target bounding box. 

We have constructed three test sets, A, B and C, 
which are described in Table 1. Note that due to 
the depression angle variation between the model data 
(17") and the test set C (15"), data distortion is nat- 
urally introduced in the original test views of C. The 
occlusion/clutter rate and E for these original views are 
estimated to be about 50% and 1 pixel, respectively. 
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Set Test views 
A 697 model views 
B 697 model views 
C 413 views, ed = 15' 

3) Recognition System: Our recognition system is 
based on geometric hashing. The relative distances, 
along image axes (range, cross range), between ev- 
ery pair of model scattering centers are used to map 
the pair into a tuple in the hash table, which consists 
of target type, azimuth and location of the reference 
scattering center. At run-time, pairs of scattering cen- 
ters, extracted from the scene data, are used to gener- 
ate votes for the identity, azimuth and location of the 
scene target. A pair of scene and model scattering cen- 
ters are considered consistent, if they are in the same 
location, in case 6 = 0, or if they are four-neighbors, 
in case E = 1.0. The generated votes are accumulated 
in a 4-D vote table, and the hypothesis correspond- 
ing to the entry with the maximum number of votes 
is selected. For test sets A and B,  the generated hy- 
pothesis is considered correct, if the target type and 
azimuth are the same as those of the scene target, and 
the scene/model relative location is not more than E 

along each of the image axes. For test set C, due to 
the nature of the problem and the data, we have al- 
lowed the azimuth to be within f4" and the relative 
location to be within f5 pixels along each image axis. 
The algorithm examines almost all of the target, az- 
imuth and discretized relative location space, and so 
we consider its performance to be close to optimal. 
4) Results: Figure 6 shows the PCR plots for the 
three test sets. From these plots, we observe: 1) In 
case E = 0, Figure 6(a), the predicted plot virtually 
coincides with the actual one. This is because, in such 
a case, the similarity function is composed of weighted 
impulse functions. Accordingly, peak instances, which 
are considered for PCR estimation, represent all pos- 
sible candidates for misinterpretation, thus leading to 
a very accurate estimate. 2) In case E = 1.0, Figures 
6(b) and 6(c), our method provides an optimistic PCR 
estimate. This is expected, since, as explained in the 
previous section, peak instances no longer represent all 
possible candidates for misinterpretation (which are 
infinite in this case). Another, less obvious, reason for 
the optimism of PCR estimation is the difference be- 
tween the consistency region used in the experiments, 
four-neighbors, and the one assumed in the analysis, a 

E Occlusion/Clutter (r: 60. 

1.0 
1.0 

0 20%, 30%, . . ., 90% ' 40- 
20%, 30%, . . ., 80% 
50%, SO%, . . ., 80% 
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~ l u ~ i o ~ l u l l e r  Rate OCEbsioKbller R a e  

(a) Test Set A (b) Test Set B 

U) 

IW 
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circle of radius e .  The fact that the area of the former 
is about 60% larger than that of the later increases 
the clutter votes for object instances, thus degrading 
performance and further deviating actual PCR plot 
from predicted one. 

5 Conclusions 
We have presented a novel method for predicting 

the performance of object recognition as a function of 
data uncertainty, occlusion, clutter and model similar- 
ity. Validity of the method has been demonstrated by 
comparing predicted PCR plots with those that are 
obtained experimentally using SAR data. 
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