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Abstract

Current computer vision systems whose basic
methodology is open-loop or �lter type typically use im-
age segmentation followed by object recognition algo-
rithms. These systems are not robust for most real-
world applications. In contrast, the system presented
here achieves robust performance by using local rein-
forcement learning to induce a highly adaptive mapping
from input images to segmentation strategies. This
is accomplished by using the con�dence level of model
matching as reinforcement to drive learning. The sys-
tem is veri�ed through experiments on a large set of
real images.

1. Introduction
A model based object recognition system has three

key components: image segmentation, feature extrac-
tion, and model matching. The goal of image segmen-
tation is to extract meaningful objects from an input
image. Image segmentation is an important and one of
the most di�cult low-level image processing and com-
puter vision tasks. All subsequent image interpretation
tasks including feature extraction and model matching,
rely heavily on the quality of the image segmentation
process.

The inability to adapt the image segmentation pro-
cess to real-world changes is one of the fundamental
weaknesses of typical model-based object recognition
systems. Typical object recognition systems are open-
loop. Segmentation and feature extraction modules use
default algorithm parameters, and generally serve as
pre-processing steps to the model matching compo-
nent. These parameters are not reliable, since when
the conditions for which they are designed are changed
slightly, these algorithms generally fail without any
graceful degradation in performance. As an example,
Figures 1(a) and (b) show two outdoor color images
with varying environmental conditions, and their cor-
responding segmentations obtained using Phoenix [4]

with default parameters are shown in Figures 1(c) and
(d). From these segmentation results, no algorithm
would be able to perform model matching with su�-
cient con�dence to recognize the stop sign.
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Figure 1. (a),(b): Two outdoor color images.
(c),(d): Corresponding segmentations using
Phoenix with default parameters

This paper presents a computationally e�cient lo-
cal reinforcement learning technique that is capable of
inducing a highly adaptive mapping from input images
to segmentation strategies. It takes the output of the
recognition algorithm and uses it as a feedback to inu-
ence the performance of the segmentation process. As
a result, segmentation strategies, conditioned on cur-
rent inputs, for performing a particular task are chosen
more judiciously, i.e., so as to maximize the con�dence
of model matching.

1.1. The Approach

We develop a general approach for achieving robust
image segmentation and object recognition by using lo-
cal reinforcement learning that combines local learning
and reinforcement learning in a novel way. The inte-
gration of the two paradigms at the algorithmic level
makes it possible to take advantages of some of the best
features of both worlds. The basic assumption is that
we know the models of the objects that are to be recog-
nized, but we do not know the number of objects and
their locations in the image. The system consists of
image segmentation, feature extraction, model match-



ing, and reinforcement learning modules. The match-
ing con�dence is used as feedback to drive learning in
a local reinforcement learning framework. The goal
is, therefore, to maximize the matching con�dence by
�nding a set of segmentation algorithm parameters for
the given recognition task.

This work is most closely related to earlier work
by the authors [5], in which they describe a reinforce-
ment learning system that uses recognition output as
feedback to guide the segmentation process. However,
their method is global in that only a single mapping
is induced over the entire input space. In addition,
their system was evaluated only on a small number
of images. In this work, we show that local reinforce-
ment learning described here can outperform the global
learning method using empirical results based on a
large set of real images.

2. Local Reinforcement Learning

Local learning �rst partitions the input space into
a set of local regions (clusters). These methods then
learn a separate mapping individually in each local re-
gion. The partitioning procedure used in this paper is
the K-means method. The number of regions,K, is de-
termined experimentally using the Calinski-Harabasz
Index [3] as an indicator. The Index is de�ned as
(TraceB=(K � 1))=(TraceW=(n�K)), where n is the
number of sample data. B andW are the between and
within cluster sum of squares and cross product ma-
trices from multivariate statistics, respectively. Larger
Index values indicate greater class cohesion and exter-
nal isolation. Once the number of regions (clusters)
has been determined, a local mapping in each region is
constructed using connectionist reinforcement learning.
For a given input, generalization is made by searching
for the nearest cluster and then applying the mapping
associated with the cluster to compute segmentation
parameters.

2.1. Connectionist Reinforcement Learning

The particular class of reinforcement learning algo-
rithms employed in each local region for our object
recognition system is the connectionist REINFORCE
algorithm [6], where units in such a network are
Bernoulli quasilinear units, in that the output of such a
unit is either 0 or 1, determined stochastically using the
Bernoulli distribution with parameter p = f(s), where
f is the logistic function, f(s) = 1=(1 + exp(�s)) and
s =
P

i wixi is the usual weighted summation of input
values to that unit. For such a unit, p represents its
probability of choosing 1 as its output value.

For the Bernoulli quasilinear units used in this re-
search, the REINFORCE algorithm prescribes weight
increments equal to �wij = �(r � b)(yi � pi)xj , where

� is a positive learning rate, b serves as a reinforcement
baseline, xj is the input to each Bernoulli unit, yi is the
output of the ith Bernoulli unit, and pi is an internal
parameter to a Bernoulli random number generator. It
can be shown [6] that the algorithm statistically climbs
the gradient of expected reinforcement in weight space.

3. Empirical Evaluation

This section describes empirical results evaluating
the performance of our system on a large set of outdoor
color images. For this experiment, the Phoenix algo-
rithm [4] was chosen as the image segmentation compo-
nent in our system. Phoenix works by splitting regions
using a histogram for color features. Note that any seg-
mentation algorithm with adjustable parameters can
be used in our approach. The Phoenix algorithm has a
total of fourteen adjustable parameters. The four most
critical ones are used in learning. These parameters are
Hsmooth, Maxmin, Splitmin, and Height. The ranges
for each of these parameters are the same as those used
in [1]. The resulting search space is about one million
sample points.

The feature extraction consists of �nding polygon
approximation tokens for each of the regions obtained
after image segmentation. The polygon approxima-
tion is obtained using a split and merge technique [2]
that has a �xed set of parameters. And object recog-
nition employs a cluster-structure matching algorithm
[2] that is based on the clustering of translational and
rotational transformations between the object and the
model for recognizing 2-D and 3-D objects. Its output
is used as reinforcement to drive learning.

The experiment consists of 500 images, some of
which are shown in Fig. 1. These images are col-
lected in late afternoon over several days (including a
rainy day) using a Canon PowerShot 600 digital cam-
era. They are taken in a variety of locations in South-
ern California. These images simulate an autonomous
navigation scenario in which the autonomous vehicle
must be able to recognize the stop sign. The size of
the images is 78 by 104 pixels.

Eighty images are randomly selected as training
data, and the rest ( 420) as testing data. Red com-
ponent of each image is projected onto the subspace
spanned by the �rst four eigenvectors corresponding to
four largest eigen values of the red feature plane of the
images. These inputs are normalized to lie between 0
and 1. The training data are �rst clustered using the
K-means algorithm based on the eigen inputs. The K
value that attained the largest Calinski-Harabasz Index
was selected as the �nal cluster number (4 in this exper-
iment). Within each cluster, a network having 3 hid-
den Bernoulli units and 20 output Bernoulli units that
encode the four Phoenix parameters was trained using



the local learning algorithm. Each hidden unit takes
four eigen inputs and there are no connections from
inputs to output units. Because of the independence
of the output units, the e�ective number of weights in
the network is 13.
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Figure 2. (a): Confidence level during learn-
ing. (b),(c): Segmentation of the images
shown in Fig. 1. (d): Segmentation of a test-
ing image with stop sign partially occluded.

Comparison with Global Learning: In the �rst
experiment, a global network having 8 hidden units
(experimentally determined) was trained on the entire
training data to construct a single mapping. Each lo-
cal network was allowed 150 iterations, i.e., 150 sweeps
through local training data, and then four con�dence
values over the four clusters were averaged. In contrast,
the global network was given 600 iterations through
the entire 80 training images. Con�dence values re-
ceived over every 4 iterations were averaged and plot-
ted. Fig. 2(a) shows the average matching con�dence
received over time by the two methods. It can be seen
that, given the same amount of computation, the local
method learned much faster and its con�dence value
exceeded 0.7, whereas the global con�dence value was
slightly above 0.5. Furthermore, when applied to un-
seen images, the local method achieved an average con-
�dence value of 0.71, whereas the global method only
managed to achieve an average value of 0.59.
Comparison with Case-Based Learning: In the

second experiment, case-based learning (CBL) was ap-
plied to the same task. The CBL method �rst learns,
for each cluster, a set of segmentation parameters
achieving the best performance for the image closest to
the cluster center. It then stores the set of segmenta-
tion parameters in a memory location associated with
the cluster center. For a given test image, CBL returns
the set of segmentation parameters associated with the
cluster that is closest to the input image. It achieved
an average con�dence value of 0.21 on the testing data,
which is far worse than the local learning method. This
demonstrates that the local learning approach has the
ability to compensates not only variations within each
cluster, but also inadequate cluster characterization.

Comparison with Default Parameters: In the
�nal experiment, the Phoenix algorithm with default
parameters was used. The system was only able to
achieve an average con�dence value of 0.04. Figures
2(b) and (c) show the segmentation results of the im-
ages shown in Fig. 1 using the local learning method,
from which successful model matching was achieved
(above 0.9). Fig. 2(d) shows the segmentation of a
testing image in which the stop sign is partially oc-
cluded.

4. Conclusion

We have presented a general approach to achiev-
ing robust image segmentation and object recognition.
The approach systematically uses model matching con-
�dence as feedback in a novel local reinforcement learn-
ing framework to e�ciently learn segmentation param-
eters and perform object recognition simultaneously.
Experimental results demonstrate that the simple ap-
proach is promising in accommodating the wide variety
of images encountered in real-world applications.
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