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Abstract

The correctness of results of structural object recog-
nition approaches largely depends on the reliability
of the features extracted from the image data. How-
ever, this cannot be satisfied in many practical situ-
ations where the applications require robust recogni-
tion during day/night under high clutter. Stochas-
tic models provide some attractive features for pat-
tern matching and recognition under partial occlu-
sion and noise. In this paper, we present a hidden
Markov modeling (HMM) based approach for rec-
ognizing objects in synthetic aperture radar {SAR)
images. We develop multiple models for a given
SAR image of an object and integrate these mod-
els synergistically using their probabilistic estimates
for recognition. The models are based on sequen-
tialization of scattering centers extracted from SAR
images. Experimental results are presented using
09,000 training samples and 81,000 testing samples
for 5 classes. We achieved better than 87% correct

recognition performance when the objects are up to
30% occluded.

1 Introduction

One of the critical problems for object recognition is
that the recognition process has to be able to handle
partial occlusion of the object and spurious or noisy
data. In most of the object recognition appreaches,
the spatial arrangement of structural information of
the object is the central part that offers the most
important information. Under partial occlusion sit-
uations the recognition process must be able to work
with only portions of the correct spatial information.
Rigid template matching and shape-based recogni-
tion approaches depend on good prior segmentation
results. But the structural primitive (e.g., line seg-
ments, point-like features, ete.) extracted from oc-
cluded and noisy images may not have sufficient re-
liability, which will directly undermine the perfor-
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mance of those recognition approaches.

We want to suggest an object recognition mecha-
nism that effectively makes use of all available struc-
tural information. Based on the nature of the prob-
lems caused by occlusion and noise, we view the
spatial arrangement of structural information as a
whole rather than view the spatial primitives indi-
vidually. Because of its stochastic nature, a hidden
Markov model (HMM) is quite suitable for charac-
terizing patterns. lis nondeterministic model struc-
ture makes it capable of collecting useful informa-
tion from distorted or partially unreliable patterns.
Many successful applications of HMM in speech
recognition [1, 2, 3] and character recognition [4, 5]
atiest to its usefulness. Thus, it is potentially an

- effective tool to recognize objects with partial occlu-

sion and noise.

However, the limit of traditional HMMs is that they
are basically one dimensional models. So how to ap-
propriately apply this approach to two dimenstonal
image problems becomes the key. It has been largely
an unsolved preblem. In this paper we use the fea-
tures based on the image formation process to en-
code the 2-D image into 1-D sequences. We use
information both from the relative positions of the
scattering centers and their relative magnitude in
SAR tmages [6]. In this paper we address the fun-
damental issues of building object models and using
them for robust recognition of objects in SAR im-
ages. '

1.1 Overview of the approach

Figure 1 provides an overview of the HMM based
approach for recognition of occluded objects in SAR
imagery. During an off-line phase, scattering centers
are extracted from SAR images by finding local max-
ima of intensity. Both locations and magnitudes of
these peak features are used in the approach. These
features are viewed as emitting patterns of some
hidden stochastic process. Multiple observation se-
quences based on both the relative geometry and
relative amplitude of SAR return signal (obtained
as a result of the physics of the SAR image forma-
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Figure 1: The HMM-Based approach for recognition
of occluded objects.

tion process) are used to build the bank of stochastic
models to provide robust recognition in the presence
of severe occlusion and unstable features caused by
scintillation phenomena {where some of the features
may appear/disappear at random in an image). At
the end of the off-line phase, hidden Markov recog-
nition models for various objects and azimuths are
obtained. Similar to the off-line phase, during the
on-line phase features are extracted from SAR im-
ages and observation sequences based on these fea-
tures are matched by the HMM forward process with
the stored models obtained previously. Maximum
likelihood decision is made on the classification re-
sults. Now the results obtained from multiple mod-
els are combined in a voting kind of approach that
uses both the object, azimuth label and its proba-
bility of classification. This produces a rank ordered
list of classifications of the test image and associated
confidences.

1.2 Related work and our contribution

There is no published work on object recognition us-
ing HMM models. Fielding and Ruck [7] have used
HMM models for spatio-temporal pattern recogni-
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tion to classify moving objects in image sequences.
Rao and Mersereau [8] have attempted to merge
HMM and deformable template approaches for im-
age segmentation. Template matching [9] and major
axis based approaches {10} have been used to rec-
ognize and index objects in SAR images, however,
they are not suitable to recognize occluded objects.
Recently, invariant histogram in conjunction with
template matching have also been used to recoghize
occluded objects in SAR images [11].

The original contributions of this paper are:

e Hidden Markov modeling approach commonly
used for recognizing 1-D speech signals is ap-
plied in a novel manner to 2-D SAR images to
solve the occluded object recognition problem.

o Multiple models derived from various observa-
tion sequences, based on both the geometry and
signal amplitude are used to capture the unigue
characteristics of patterns to recognize objects.

e Unlike most of the work for model building
in computer vision, our recognition models us-
ing hidden Markov modeling concept are based
on the peculiar characteristics of SAR images
where the number of models used for recogni-
tion is scientifically justified by the quantifica-
tion of the azimuthal variance in SAR images.

¢ Extensive amounts of data (99,000 training
samples and 81,000 testing samples obtained
from 1800 images generated by the well known
XPATCH SAR simulator [12] that uses 3-D
CAD models of objects) is used to test the
approach for recognition of objects for various
amounts of ocelusion (10—50%) and good recog-
nition performance is obtained.

2 Hidden Markov Modeling
Approach

1t is well known that HMM can model speech signals
well 1, 2, 3. It is a model used to describe a doubly
stochastic process which has a set of states, a set of
output symbols and a set of transitions. Each tran-
sition is from state to state and associated with it
are a probability and an output symbol. The word
‘hidden’ means that although we observe an out-
put symbol, we cannot determine which transition
has actually taken place. At each time step ¢, the
state of the HMM will change according to a tran-
sition probability distribution which depends on the
previous state and an observation y is produced ac-
cording to a probability distribution which depends
on the current state.

Formally, a HMM is defined as a triple A = (A, B, ),
where a;; is the probability that state i transits to
state j, b;; (k) is the probability that we observe sym-
bol k in a transition from state i to state j, and =y
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N: the number of states.
M: the number of distinct observable symbols.
A a;is the probability that state i will transit to state j.

B: bjj(k) is the probability that symbol k will be observed
when there is a transition from state i to state j.

T1: ; is the probability that state i is the initia state.
Figure 2: A N states forward-type HMM

is the probability of ¢ being the initial state. Figure
2 shows an example of a NV states HMM.

Recognition Problem — Forward Procedure: The
HMM provides us a useful mechanism to solve
the problems we face for robust object recognition.
Given a model and a sequence of observations, the
probability that the observed sequence was produced
by the model can be computed by the forward pro-
cedure [13]. Suppose we have a HMM A = {4, B, n}
and an observation sequence yf . We define oy () as
the probability that the Markov process is in state
i, having generated 3.

ai(t) = 0, when t=0 and 1 is not an initial state.
ai(t) = 1, when t=0 and i is an initial state. (1)
ai(t) = Ljloy(t ~ 1)ajibsi(y:)], whent > 0.

The probability that the HMM stopped at the fi-
nal state and generated y¥ is as.(T). After ini-
tialization of @, we compute it inductively. At each
step the previously computed « is used, until the ¢
reaches T. ag.(T) is the sum of probabilities of all
paths of length T'.

Usually, a will become too small to be represented
in computer after several iterations. We take the
logarithm of the ¢ value in the computation.

Training Problem — Baum-Welch Algorithm: To
build a HMM is actually an optimization of the
model parameters so that it can describe the ob-
servation better. This is a problem of training. The
Baum-Welch re-estimation algorithm is used to cal-
culate the maximum likelihood model. But before
we use the Baum-Welch algorithm, we must intro-
duce the counterpart of e;(t) : 5(t), which is the
probability that the Markov process is in state ¢ and
will generate y7, ;.

Bi(t) = 0, when t=T and i is not a final state.
Bi(t) = 1, when t=T and i is a final state. (2)
Bi(t) = Ejlaijbij(ye+1)8i(t+ 1)}, when 0 <t < T.

The probability of being in state i at time? and state
j at time ¢ + 1 given observation sequence y? and
the model A is defined as follows:

;i) = PXi=i,Xip=7 ly’{)

ot — Daigby; (3:) 8; (1)
w5 asi (%) @

Now the expected number of transitions from state i
to state j given y{ at any time is simply £7_, v;;(¢)
and the expected number of transitions from state
i to any state at any time s ©7_; Sxvix(t) . Then,
given some initial parameters, we could recompute
@5, the probability of taking the transition from
state 7 to state j as:

T st
ETt EI: ’J-( ) (4)
2= 2k Vik (2)

aj; =

Similarly, b;;(k) can be re-estimated as the ratio be-
tween the frequency that symbol % is emitted and
the frequency that any symbol is emitted:

Ec- =k7i'(t)
bij () = —F— (5)
175 (@)
It can be proved that the above equations are guar-
anteed to increase ag.(7T) until a critical point is
reached, after which the re-estimate will remain the

same. In practice, we set a threshold as the ending
condition for re-estimation.

So the whole process of training a HMM is as follows:

1. Initially, we have only an observation sequence
y¥ and blindly set (A, B, ).

2. Usey? and (A, B, 7) to compute o and 8 {equa-
tions 1, 2.

3. Use o and § to compute v (equation 3).

4. Use yT, (4, B, ), a, 8 and ¥ to compute A and
B (equations 4, 3). Go to step 2.

A HMM is able to handle pattern distortions and the
uncertainty of the locally observed signals, because
of its nondeterministic nature. However, a HMM
is primarily suited for sequential, one-dimensional
patterns and it is not obvious that how a HMM can
be used on 2-D patterns in object recognition. The
basic ideas to apply a HMM for our purpose are {a)
training the HMM A by samples of SAR images of
a certain object, and (b) recognizing ar unknown
object in a given SAR image. These two problems
are addressed in the following. The key questions
are what we shall use as observation data and how
we get the observation sequences.

3 Hidden Markov Models for SAR
Object Recognition

3.1 Extraction of Scattering Centers

Scattering centers (location and magnitude) ex-
tracted from SAR images are used to train and test
models for recognition. We consider a pixel as a scat-
tering center if the magnitude of SAR return at this
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Figure 3: Examples of scattering centers (white
dots) extracted from SAR images at azimuths
0°,60°,90°. (a) Fred tank, (b) SCUD launcher with
missile down, (¢) T72 tank, (d) T80 tank, (e} Mlal
tank.

pixel is larger than all its eight neighbors. Figure 3
shows some examples of scattering centers extracted
from SAR images (6" resolution) of various objects
at 15° depression angle and azimuths at 0°, 60°, and
90°.

3.2 Rotation Variance of Scattering
Centers and Representation of 3-D
Objects '

Unlike the visible images, SAR images are extremely
sensitive to slight changes in viewpoint (azimuth and
depression angle) and are not affected by scale [14].
We evaluate the characteristics of scattering centers
to find out what kind of location invariance exists
among scattering centers. Figure 4(2) shows the ro-
tation invariance for T72 tank. The data is obtained
by rotating the image at azimuth * (for a fixed de-
pression angle) by z° { z from 1 to 10 ), and com-
paring the rotated image with the image of (i + z)°
to see how many scattering centers do not change
their location. Since the object chip is 256 x 256
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Figure 4: (a)T72 tank Rotational Invariance.{b)T72
tank Rotational Invariance With 1° Angular Span.

pixels, we rotate the image with respect to the cen-
ter point (127.5,127.5). The distance measurement
criteria “exact match” and “within one pixel” are
defined in the following:

xr exactly matches x:

if MAX(lz — 2], ly—url) < % pixel
xy and x are within one pixel:

if MAX(iz — zod, Jy — vr1) < 13 pixel

Figure 4(a) shows the average result for images at all
the 360 azimuth angles. The top 50 scattering cen-
ters are used for each image. Figure 4(b) gives the
percentage of scattering center locations unchanged
vs. azimuth angle with 1° angular span for the exact
match and within one pixel match. These results
show that scattering centers for SAR images vary
greatly with relatively small changes of azimuth an-
gles. As a result we represent an object at a given
depression angle by 360 azimuths taken in steps of
1°.

3.3 Extraction of Observation Sequences

After the scattering centers are extracted, we need
to encode the data into 2 1-D sequence as the input
to a recognition model based HMM process. It is
one of the key factors which affects the performance
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Figure 5: Example of an observation sequence su-

perimposed on an image of T72 tank.

of a HMM modeling approach for object recogni-
tion. There are many ways to choose observation se-
quences, but we want to use information from both
the magnitude and the relative spatial location of
the scattering centers extracted from a SAR image.
Also the sequentialization method should not be af-
fected by distortion, noise, or partial occlusion and
should be able represent the image efficiently.

Based on the above considerations, we employ two
approaches to obtain the sequences.

¢ Sequences based on relative amplitudes: O, =
{Magnitude,, M agnitude,, ..., Magnitude,}

¢ Sequences based on geometrical relationship:

0, ={d(1,2),d(2,3),....,d{n, 1)} (iength n)

03 = {d(1,2),d(1, 3),..., d(1,n)} (length n — 1)
04 = {d(2,1),d(2,3),... d(2 n)} (length n — 1)
O = {d(3 1),d(3,2),....d(3,n)} (length n — 1)

where Magnitude; is the amplitude of ith scattering
center and d(i, j) is the euclidean distance between
scattering centers ¢ and j. Figure 5 gives an exam-
ple to illustrate how we get the sequences. Sequence
O is obtained by sorting the scattering centers by
their magnitude. We label the scattering centers 1
through n in descending order. So in this approach,
we do not use the location information and thus can
avoid the instability caused by the errer in local-
ization of scattering centers. Sequences Qs through
(s are obtained based on the relative locations of
the scattering centers. In experiments described in
section 4, we only consider the top 20 scattering cen-
ters. This is because we expect that the scattering
centers with larger magnitude are relatively more
stable than the weaker ones.

Since we use discrete HMMs, each element in the se-
quence should be converted to an observation sym-
bol. It is like a label from 1 to K that represents
the symbols which can be observed for a HMM. We
use the A'-means aigorithm [15] to classify the mag-
nitude values (or distance values) of all the scatter-
ing centers in the database into K classes. Once
we know to which class each of the elements of a
sequence belongs, we label the element with the la-
bel of its class. Thus, the sequence of magnitude
values (or distance values) now is changed to a la-
bel between 1 to K which represents how different
scattering centers fall into the different groups and
finally, for a given sequence, we obtain a sequence of
observation symbols.
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3.4 Off-line Training Phase
=Y

The procedure for bulldmg the model base is de-
scribed as follows:

1. Loop (for a given depression angle) lines 2-4 for
each object and each azimuth angle.

2. Generate images which simulate occlusion with
scattering centers occluded from different direc-
tions (see section 4.1).

3. Loop line 4 for each image generated by line 2.

4. Use Baum-Welch algorithm to re-estimate the
HMM parameters. (Exit 3 — 4 loop when there
is no further change in parameter values.)

3.5 On-line Recognition Phase
The recognition procedure is described as follows:

1. Loop lines 2-3 for all the testing observation se-
quences.

2. Loop line 3 for all the models in the model base.

3. Feed the observation sequence into the model,
(A, B,IM}(a3,a1), Use Forward algorithm to
compute the probability that this sequence is
produced by this model.

4. The model with maximum probability of an ob-
servation sequence is selected as the best match.

4 Experiments

4.1 Data

Using the well known XPATCH [12] SAR simula-
tor, we generate one set of SAR images of 5 objects
{Fred tank, SCUD mssile launcher, T72 tank, T80
tank and Mlal tank, shown in Figure 6.) at 15°
depression angle, at each of the azimuth angles from
0° to 359°. We extract the 20 scattering centers
(local maxima) with largest magnitudes. In the ex-
periments, since we want to test the performance of
our approach under partial occlusion and spurious
data, we simulate realistic occlusion situaticns and
generate images for training and testing.

Simulating occlusion: We consider the occlusion to
occur possibly from 9 different directions as shown in
Figure 7. Scattering centers being occluded are not
available, moreover, we add some spurious data into
the image. For instance, 20 scattering centers are
shown in each image of Figure 7. They are obtained
by removing 4 scattering centers from one particular
direction {simulated occlusion) and adding 4 spuri-
ous scattering centers into the image. The spurious

scattering centers are added based on the following
rules:



(a) Fred tank {b) SCUD mis-

sile launcher

(e) Mlal tank

Figure 6: Targets.

e The location of the scattering center is gener-
ated as a pair of random numbers.

¢ The magnitude of the scattering center depends
on a random number r between 1 and 50. If r
is between 1 and 20, we use the magnitude of
the rth brightest image scattering center as the
magnitude of the spurious center. Otherwise,
we choose the magnitude of the 21st brightest
scattering center if it was not already assigned
to another spurious center. If it was already
chosen, we will select the magnitude of the first
unused scattering center {the 22nd, the 23rd,
and so on).

Training Data: Based on the method of simulating
occlusion described above, we generate 90 images
from the original image (10 samples for each of 9
directions) at 5% occlusion and another 90 images
at 10% occlusion. Including the original image, we
have 181 images per object per azimuth angle to
train multiple HMM models. Then we have a to-
tal of 99,000 (5 objects, 360 azimuths, 55 occluded
images) samples for training.

Testing Data: We generate one image with o scatter-
ing centers occluded {0 = 2,4,6,80r 10} from direc-
tiond (d=0,1,...,8) per azimuth angle per object.
So there are 1800 images (5 objects x 360 degrees)
penerated for testing of occlusion with o scattering
centers occluded from direction d. Thus, we have a

Figure 7: Scattering centers of T72 tank at azimuth
0°, part of scattering centers are occlhuded from a
particular direction (0-8, left to right, top to bot-
tom).

total of 81, 000 (5 objects, 360 azimuths, 5 different
occlusions 10% — 50%, and 9 directions) samples for
testing.

4.2 Training — Building Bank of HMM

Models for Recognition

We performed experiments to choose the optimum
of number of states and number of symbols of the
HMM. We use data from 5 azimuth angles of five ob-
jects (Fred tank, SCUD missile launcher, T80 tank,
T792 tank, and Mlal tank). The results are shown
in Table 1.

We find that with the increase in the number of
states and symbols, recognition performance in-
creases. Considering both the recognition perfor-
mance and the computation cost, we choose 8 states
and 32 symbols as the optimal number of states and
symbols for our HMM models. Figure 8 illustrates
example parameters of a b state, 4 symbol HMM.

We have 1800 (= 360 x 5) HMM models. Further,
since we have defined five kinds of observation se-
quences for each image (01,02, 03,04, Os), we get
models based on each kind of observation sequence.
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Table 1: Recognition rate of HMM with different
number of states and symbols.

N - # of states.

M - # of symbols.

R - Recognition rate % (top answer is correct).

I - Indexing rate % (correct answer is in the top 5).

wd only td with pose
NIM| R T T R I
418 76.1 | 96.5 [ 62.6 | 79.0
4 (161 89.6 ["984 | 85.4 | 03.1
4 1241 951 71 993 1 918 | 973
4 1321 966 [ 99.9 | 948 | 99.0
4 {64} 99.7 [ T00.0 | 99.6 | 100.0
5 | 8 80.1 | 97.4 | 67.3 | 84.0
5 |16 | 91.9 | 98.6 | 86.7 | 93.7
5 1241 966 ] 909.7 | 946 | 98.6
5 |32 ] 97.8 [ 99.8 | 96.7 | 99.3
9 [ 64] 99.9 TI00.07T 99.9 [100.0
61 8 825 | 96.9 | T1.7T | 84.8
6 |16 93.8 [ 995 | 90.1 | 96.7
6 |24 985 [T003 97 09.7
6 132 989 [100.0] 98% | G9.0
6 [ 64 ]| 100.0 { 100.0 | 100.0 | 100.0
B[ 8 843 | 976 [ 774 | 876
8 | 16] 964 | 99.8° | 046 | 983
8 1241 994 [100.0] 99 99.9
8 1321 998 [ 1000 99.8 [100.0
8 | 64 | 100.0 | 100.0 | 100.0 | 100.0
10 | 8 [ 100.0° 7 100.0 [ 100.0 | 100.0
10116 ) 983 [ 999 | 973 | 99.6
10 1244 999 T100.0 | 99.9 | 99.9
10 | 32 || 100.¢ ['100-0 { 99.9 | 100.0
10 [ 64 ]| 100.0 | T00.0 | 100.0 [ 100.0

4.3 Testing Results

During testing phase, each of the 81,000 testing im-
ages 1s tested against all models (1800 models: 5
objects, each has 360 models for each azimuth an-
gle). If the model with the maximum probability is
the model which produced the sequence, we count it
as one correct recognition. Otherwise, we count it as
one incorrect recognition. After we get the results
of scattering centers occluded from all 9 directions,
we average the result and associate this recognition
performance with the model.

Figure 9 shows the testing results for each of the
five kinds of sequences: Oy, 0,, ..., O (section 3.3).
The top curve, a dotted line, is the percentage that
the test case object and pose is among the top ten
recognition results, and the lower curve, in solid line,
indicates the percentage that the recognition result
with the highest probability is the same as the test
case object and pose.

Integration of results from multiple sequences: Since
not all models based on various sequences for a
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Figure 8: An example: parameters of a 5 states,
4 symbols HMM. The number on edges represents
the transition probability, and the vector associated
with each transition represents bi;(k). In our case,
we use HMM with 8 states, 32 symbols

particular object and azimuth will provide optimal
recognition performance under occlusion, noise, etc.,
we Improve the recognition performance by combin-
ing the results obtained from all five kinds of models,
Before discussing the approach for integration, we
ask the question that if one testing image cannot be
recognized correctly by models based on a particular
sequence, say O, will it be recognized correctly by
models based on other kinds of sequences?

From the testing results, we obtained Table 2 which
shows how many incorrect recognitions, made by us-
ing models based on sequence O3, can be correctly
recognized (“captured”) by models based on other
sequences. We draw two curves (Figure 10(a)) to
show the possible “upper bound” and “lower bound”
of recognition rate we can achieve based on the 5
kinds of models. We define the “upper bound” as the
highest possible recognition performance that can be
achieved using the 5 models {O; to Os) considering
only the top candidate for recognition from each of
the models. The curve on the top is obtained by
considering all 5 kinds of models, if one of them can
correctly recognize the test data, we count it as a
correct recognition. The total number of errors cor-
responding to “upper bound” are shown in the Tth
column of the Table. The “lower bound” or the bot-
tom curve is the worst recognition result out of the
five models.

We have developed a histogram-like method shown
in Figure 11 to integrate the results from models
based on 5 different sequences.

1. For each test image, we collect the ten highest
possibilities in the testing results corresponding
to each of the sequences 04, 0s, ..., Os.

2. A normaiization is done to the ten probabilis-
tic estimates corresponding to each of the se-
quences. ‘So we have 50 normalized numbers for
each test image.




Table 2: Testing results for occluded object recognition using of 81,000 testing cases.

0

10 15 20 25 30 35 40 45 50
Farcantage of occlusion (%)

(e}

Figure 9: Recognition rate vs. percentage of occlu-
sion for HMM models based on (a) Oy, (b) O2, (¢}
03, (d) 04, and (e) 05.

3. We draw a histogram with probability vs. ob-
ject and pose (here we combine object and pose
as one parameter). This is because because each
number corresponds to an object and a pose
(the number is the probability that the test im-
age is the image of that object at that pose),

4. If the object associated with the highest proba-
bility in the histogram is the same as the ground
truth, we count it as one correct recognition.

The second curve from the bottom in Figure 10(b)
is the result. The corresponding confusion matrix
for various amounts of occlusion is shown in Table
3. On the average, we find 80.35% correct recog-
nition performance when the objects are occluded
from 10 — 50%. The second curve from the top in
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Figure 10: (a)} “Upper” and “lower” bound of
recognition rate vs.  percentage of occlusion.
(b)Performance of integrated models: using inte-
grated models O; to Os. The results for recogni-
tion {Top 1} and indexing (Top 5} candidates are
superimposed on the figure shown in (a}.

Figure 10(b) is obtained by counting a correct in-
dexing result when the ground truth is in the ob-
jects associated with the highest 5 probabilities in
the histogram. For the purpose of comparison, we
have also superimposed the curves in Figure 10(a)
into Figure 10(b) with “lower/upper” bounds. Con-
sidering the correct indexing answer in the top b re-
sponses, the average performance is 93.3% for 5 ob-
jects occluded from 10% — 50%. Thus, our method
of integration produces good results in comparison
to “upper bound” which is 95.3% for 5 objects for
10% — 50% occlusion.
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test image Table 3: Confusion Matrix for 5 objects classes at
varying amounts of occlusion (10% — 50%).
l l l l’ % Oc-|Fred [SCUD[T72 | T80 [Mlial
Model Model Model Model Model clusion
based based based based based
16 |100.0] 60 JTOO 700 (0.0
oanOl on 02 on 03 on 04 on Q5 920 99.2 | 0.0 01104 |03
Fred 30 1959002 |06 19 |14
|iorma]imr | | Normalizer l ’ Normalizer ” Normaiizer H Normalizer] 40 87.1 0.7 2.8 5.5 3.9
50 732 1.6 |7.1 1121 ]6.0
I Histogram-based voting for a (target, azimuth) ' 10 0.0 1100.0 [ 0.0 |00 |00
l« 20 0.0 199.7 | 0.2 [0.1 | 0.0
SCUD || 30 09 973 |12 |04 | 0.3
Final recognition results based 40 3.1 | 88.8 |49 |19 |13
on decreasing confidence 50 56 | 77.9 {119 |27 | 1.9
) ) ) 10 0.0 | .0 JI0D.G| 00 | 0.0
Figure 11: Integration of results by histogram-based 20 0.4 | 0.2 198201 |02
method. T72 30 (24 |05 {95311 |06
5 Conclusions and Future Work gg 196.18 gé ggg gg gz
10 00 | 0.0 |0.0 [100.0]D0
We have presented a novel conceptual approach for 20 1.2 | 0.0 [0.1 |986 0.1
the recognition of occluded objects in SAR images. T80 30 |69 | 0.0 |06 [91.1}1.4
The approach uses multiple HMM based models for 40 ]2151] 0.1 [1.6 {726 | 4.2
various observation sequences that are chosen based 60 3741 0.8 |3.1 {509 |78
on the SAR image formation and account for both 10 0.0 ;{ 0.0 0.0 70.0 [1000
the geometry and magnitude of SAR image features. 20 16+ 00 (0.1 [0.3 [98.0
Using 99,000 training samples and 81,000 testing Mlal 30 85 | 0.2 107 |29 [87.8
samples, we find 86.76% average correct recognition 40 12251 0.8 {20 |85 |66.1
performance on 5 classes of objects with 10% — 50% 50 [369] 1.1 |5.2 [13.8 |42.9
occhusion. The number of observation sequences and
the number of features are design parameters which References

can be optimized by following the approach pre-
sented in the paper.

We have also done some initial experiments for artic-
ulated object recognition using HMM approach. We
have three sets of data: the original images for the
objects (T72 tank, T80 tank, and Mlal tank), the
images for the objects with turret at 60 degree artic-
ulation, and the images for the objects with turret
at 90 degree articulation. We compared the obser-
vation sequences O; extracted from the three sets of
images. Figure 12 shows the analysis graph for T72
tank. Figure 12 (al}), (b1), and (c1) are obtained by
counting the number of observation symbols in ob-
servation sequence of one image which are the same
as its corresponding one in observation sequence of
another image. Figure 12 (a2), (b2), and (c2) are
obtained by counting the sum of differences between
observation symbols in observation sequence of one
image and its corresponding one in observation se-
quence of another image. :

We used two sets out of three sets of images as train-
ing data to train the HMM models, and tested the
HMM models on the other set. Table 4 shows the
results. These experimental results are obtained by
using observation sequence O; only, the experiments
using other sequences O, through Oy will be done
in the future.

1127

(1] L. R. Rabiner, “A Tutorial on Hidden Markov
Models and Selected Applications in Speech
Recognition”, Proc. of the IEEE, Vol. 77(2), pp.
257-285, 1989,

[2] L. R. Rabiner and B. H. Juang, “An introduction
to Hidden Markov Models”, JEEE ASSP Maga-
zine, Vol. 3(1), pp. 4-16, 1986,

[3] L. R. Rabiner, B. H. Juang, S. E. Levinson and
M. M. Sondhi, “Recognition of Isolated Digits Us-
ing Hidden Markov Models With Continuous Mix-
ture Densities”, ATHT Technical Journal, Vol.
64(6), pp. 1211-1233, 1985,

[4] O. E. Agazzi and S. S. Kuo, “Pseudo Two-
Dimensional Hidden Markov Models for Docu-
ment Recognition”, AT & T Technical Journal,
Vol. 72(5), pp. 60-72, 1993, -

(6] O. E. Agazzi and S. S. Kuo, “Hidden Markov
Model based optical character recognition in the
presence of deterministic transformations”, Pat-
tern Recognition, Vol. 26(12), pp. 1813-1826,
November, 1993.

{6] B. Bhanu, G. Jones, J. Ahn, M. Li and J. Yi,
“Recognition of Articulated Objects in SAR Im-
ages”, In Proceedings DARPA Image Understand-
ing Workshop, pp. 1237-1250, 1996.



= = =
g 2 2
o oo " | oo oM B o
58 - 55
[ L] L7 18] o
wowm wow» w o ow
%gu 'guu ‘gu
= c 9 = 4
.—J:ﬂ -.-q_‘:l! —
28, 23, 2 g
= =
E\e‘.’; =8 58
w4 v g i
'Oau “su “5«)
- - St
1. ioEE. =R
g °ﬂ ] we [} w0 0 E 50 2 ‘ﬂ = W 150 £ 0 no 30 2
z ] z ] z
Azimuth Azimuth
(al) (b1)
® 3 23 # 8
S §° $5° ) §§°
[=3-L gg_un I:g_m
&8 g E 2 2 g
33159 Swm au,w
Egm ggm Egm
3 ] | b=
QW gl QW o YO |
e C h: i 5 &
LT w 8 O
§B ] g2
26 w 2% w 2% w
o o 8 o i o o
58 » 5E = i S5 %
£ o £t g ! T g
Z 8 o E 8 . Z8 o«
-l 1 A -l
© 2 [ c g S 2
EE‘ ) 190 1 =0 o x0 40 gé L) 123 100 [E5) oy e £ £ 55‘: ] ® 100 iC) =0 ) D £
v Azimuth “w b Azimuth © Azimuth
(a2) (b2) (c2)

Figure 12: Comparison of observation sequence (O extracted from three sets of images for T72 tank. (al,
a2) 0° vs. 60°, (b1, b2} 0° vs. 90°, (cl, c2) 60° vs. 90°.
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