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Abstract

Articulation invariant features are found (and
quantified) in Synthetic Aperture Radar (SAR) im-
ages of military vehicles. They are used in the devel-
opment of a SAR recognition engine that successfully
identified articulated objects based on non-articulated
recognition models. The engine also achieves robust
recognition performance with mostly spurious data
from noise or highly occluded objects. Performance
results are related to the percent of invariant or unoc-
chided features.

1 Introduction

1.1 Problem Definition and Scope

Automated object recognition in SAR imagery is
a significant problem because recent developments in
image collection platforms will soon produce far more
imagery (terabytes per day per aircraft) than the de-
clining ranks of 2000 image analysts are capable of
handling {10}. The specific challenges of this research
are to address the need for automated recognition of
military vehicles that can be in articulated configu-
rations {such as: tanks, where the turret can rotate
and the SCUD missile launcher, where the missile can
erect) and can be partially hidden. Previous recog-
nition methods involving template matching {11] are
not useful in these cases, because articulation or oc-
clusion changes global features like the object outline
and major axis. In this paper the probiem scope is the
recognition subsystem itself, starting with SAR chips
of target vehicles and ending with the vehicle identifi-
cation. Because the very high resolution SAR target
chips are not openly available, the U.S. Air Force pro-
vided the XPATCH high frequency radar signature
prediction code {1}, which is used to construct 4320
target chips for this research.
1.2 Overview of Approach

Our approach to object identification is specifically
designed for SAR. The peaks (local maxima) in radar
return are related to the physical geometry of the ob-
ject. The relative locations of these scattering cen-
ters are independent of translation and serve as dis-
tinguishing features. The specular radar return varies
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Figure 1: SAR recognition engine architecture.

greatly with the uncontrolled target orientation (az-
imuth). This azimuthal variance is captured by using
360 azimuth models. (The radar depression angle to
the target i1s controllable, or known, and it is fixed at
15° for this study). Useful articulation invariants are
found, which permit building non-articulated recogni-
tion models and using them to successfully recognize
articulated targets. The SAR recognition engine, Fig-
ure 1, has an off-line model construction phase and an
on-line recognition process. The recognition modelis a
look-up table that relates the relative distances among
the scattering centers (in the radar range and cross
range directions) to object type and azimuth. The
recognition process is an efficient search for positive
evidence, using relative locations of scattering centers
to access the look-up table and generate votes for the
appropriate object (and azimuth).

1.3 Related Work and Our Contribution

A comparison of this approach, for the articulated
and occluded object recognition problems in SAR,
with related work is given in Table 1. Qur approach is
designed specifically for SAR, but is related to geomet-
ric hashing [8]. Scattering center relative positions are
used as SAR recognition features. Template matching
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Table 1: Related work comparisons.

[ Area [ Related Approach 1 This Approach |
Indexing: Geometric Hashing [8]: SAH specific:
¢ transformation translation translation
scale scale fixed in SAR
rotation azimuth models

+ bin type/size real/varies integer/fixed

SAR Recognition: Template Matching {11}: Peak Locations:

¢ azimuth models 12 blobs 360 constellations
» reference frame global local
Qeclusion: Invariant Histogram [7]: Recognition Engine:
+ azimuth models 36 (10° apart) 360 (1° apart)
¢ bin size 2-4 feet 6 inches
* near neighbor? yes no
+ search exhaustive (L, nerm) voting
[ Articulation T Constraint Models [2][6] | invariants ]

[11] is not suitable for recognizing articulated and oc-
cluded objects since there will be a combinatorial ex-
plosion of the number of templates with varying artic-
ulations and occlusions. The SAR recognition engine
presented here has sufficient precision to perform both
indexing and matching functions, while the invariant
histogram technique (that has been applied to recog-
nize occluded objects [7]) has limited performance, is
only capable of indexing object models and requires a
seperate template matching step. Constrained models
of parts and joint articulation, used in optical images
[2] [6], are not appropriate for the relatively low resolu-
tion, non-literal nature and complex part interactions
of SAR images; which are handled by using articula-
tion invariants as discussed in this paper. The major
contributions of this paper are:

1. Identifies and quantifies articulation invariants.

2. Demonstrates a SAR recognition engine with ro-
bust performance for articulated and occluded ob-
jects.

3. Relates performance with invariance of features.

4. Quantifies azimuthal variance.

2 SAR Scattering Centers

The relative locations of peaks in the radar return
are characteristic features that are related to the ge-
ometry of the object. The typical detailed edge and
straight line features of man-made objects in the vi-
sual world, do not have good counterparts in SAR im-
ages for sub-components of vehicle sized objects at six
inch to two foot resolution. The amplitude map, Fig-
ure 2, of a typical SAR target (SCUD launcher with
missile erect, 18° azimuth, 15° depression) at six inch
resolution shows a wealth of peaks corresponding to
scattering centers and has no obvious lines or edges
within the boundary of the vehicle. The 4320 target
chips for the T72, T80, Mlal, FRED tanks and the
SCUD missile launcher have a range of 52 to 284 lo-
cal peaks. The locations of the peaks are related to
the aspect and detailed geometry of the object. For
example, for the T72 tank model, the strongest re-
turns (that persist for 20° or more in azimuth span)

Figure 2: Example SAR image amplitude map.

are from four trihedral corners on the upper rear deck
of the tank hull [3]. Figure 3 shows target geometries
gmodel sizes in increasing order: T80, M1al,T72 and
CUD launcher). The tank turret angle is measured
counter-clockwise from the hull forward centerline.

2.1 Azimuthal Variance

The typical rigid body rotational transformations
for viewing objects in the visual world do not apply
much for the specular radar reflections of SAR images,
because significant numbers of features do not typi-
cally persist over a few degrees of rotation. Averaging
the results for 360 azimuths of the T72 tank, only
about one-third of the 50 strongest scattering center
locations (in object centered coordinates) remain un-
changed (i.. within an error radius of 1/2 pixel) for
a 1° azimuth change (see Figure 4) and less than 5%
persist for 10°. These are significantly less than the
one foot resolution ISAR results of Dudgeon [5], whose

(b) T80 turret 60°

() M1al turret 90° (d) SCUD mis-

sile launcher

Figure 3: Articulated objects (not to scale).
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100 Tap 50 scattering centers for T72 tank (360 azimuths)
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Figure 4: T72 azimuthal invariance.

(a) two foot
Figure 5: SAR image resolution examples.

(b) six inch

definition of ‘persistence’ allowed scintillation {i.e., a
point was required to be present/absent for 2 consec-
utive angles, 1° apart, to appear/disappear, thus a
feature point would be ‘persistent’ if it appears and
then disappears in images separated by 1°). Because
of the presence of azimuthal variation and the goal of
recognizing articulated and occluded objects, in this
research we use 360 azimuth models {1° intervals), in
contrast to others who have used 6° [9] and 10° [7]
intervals and 12 models [11].

2.2 1Image Resolution

A SAR image is formed by collecting backscattered
field over a frequency band and over an angular span
of incident directions. The resolution and scale of
objects are fixed by the operating parameters of the
radar beam: frequency, frequency bandwidth and an-
gular span. Six inch resolution X-band images (10.0
GHz center frequency, 1.0 GHz bandwidth, 5.6° an-
gular span) are used to provide a rich feature set to
facilitate the task of recognizing articulated and oc-
cluded targets. This provides 16 times as many pixels
as two foot resolution. The comparison of the two
foot resolution target ‘blobs’ with the six inch resolu-
tion constellation of image points is shown in Figure
5 for the FRED tank.

(a) missile down

TR

(b) missile up

Figure 6: SCUD launcher articulation example.

T
e

(a) straight turret

(b) —60° turret

Figure 7: T72 articulation example.

3 Articulation Invariants

The existence of articulation invariants in six inch
resolution SAR imagery can be seen in Figures 6 and 7,
where the locations of scattering centers are indicated
by the black squares. In the example of the SCUD
launcher, with the radar directed (from the left in Fig-
ure 6) at the front (cab end) of the launcher, many of
the details from the launcher itself are independent
of whether the missile is erect or down. In the similar
view of the T72 tank, many of the details from the hull
are independent of the turret angle. An example of ar-
ticulation invariance is shown in Figure 8, which plots
the percentage of the strongest 50 scattering centers
for the T72 tank that are in exactly the same location
with the turret rotated 60° as they are with the turret
straight forward, for each of 360 azimuths. The mean
i, standard deviation ¢ and g — ¢ values of the aver-
age percent articulation invariance {for 360 azimuths)
is shown in Table 2 for the individual articulated ob-
jects and the overall average. Comparing the cases for
25 and 50 scattering centers, the mean values are sim-
ilar, but the y — o values are consistantly less for the
25 scatterer cases. The smaller average articulation
invariance for the M1al tank is expected, becanse the
M1 tank has a comparatively much larger turret than
the other tanks (see Figure 3).

4 SAR Recognition Engine
4.1 Local Reference Coordinate System
and Translational Invariance

Establishing an appropriate local coordinate refer-
ence frame is critical to reliably identifying objects
{based on locations of features) 1 SAR images of ar-

1137

s 77



100 T72 tank with 60 degree turret (50 scattering centars)

obtained as the origin. Although this implementation
used all the scattering center locations in turn as ref-
erence potnts, heuristics could be applied to use fewer
80 b il reference points for increased efficiency.

T T T T T T T T

4.2 Recognition Systemn Architecture

The basic system architecture, Figure 1, is an off-
line model construction process and a similar on-line
recognition process. The approach is based on local
features and local reference coordinate systems. A
systematic method is employed for constructing recog-
nition models of objects that are not articulated, the
20 | - models are stored in a look-up table and then local im-
age features are used to index into the look-up table of
models and recognize the same objects in articulated
configurations. The image features used are the po-
sitions of the scattering centers (local maxima in the
signal strength). The number of scattering centers
used is a design parameter that is optimized based
on experimental results. The positions of the scat-
tering centers are expressed in relative distances in

_ the known SAR range and cross-range coordinates.
Z3 Scavierers . 51 scatterers The model construction technique extracts these rel-
CUD miesle op eI T a0 st saer T 95 i3 s ative distances of the scattering centers from the non-

75 0  torrer i 4876 T 1488 | 3388 [ 4564 | 1171 | 3835 | articulated training data for all 360 azimuths for each
90°turret {i 46.52 | 14.96 | 31.56 || 48.00 | 12.03 | 35.97 | target type. An example relative distance distribution
Mlel 607turret ["37.37 | 14.56 1 22.81 ] 3796 | 9.32° 1 2864 | for the SCUD launcher with the missile up is shown
Tor SO E7 70460 0T e 17 g0z Taere| in Figure 9 (with the distances shifted by 154 range
o0°turret || 5782 | 13.35 | 4447 || 5384 | 794 | 4590 | and 99 cross range to make the values non-negative).

| Sverage|] 4854 | 14.10 | 3404 [| 4750 | 970 | 3818 | ihe model database is basically a table that relates

60

40

Invarianca (percent}

i s i L i 1 ) 1 i L L

0 20 40 60 80 100120140160180200220240260280.300 320 340360
Hull azimuth (degrees)

Figure 8: Articulation invariants example.

Table 2: Articulation invariance percentages.

ticulated and occluded objects. The object articula-
tion and occlusion problems require the use of a local
coordinate system; global coordinates and global con-
straints do not work, as illustrated in Figures 6 and 7
where the center of mass and the principal axes change
with articulation. In the geometry of a SAR sensor the
‘squint angle’, the angle between the flight path (cross-
range direction) and the radar beam (range direction),
can be known and fixed at 90°. Given the SAR squint
angle, the image range and cross-range directions are
known and any local reference point chosen, such as a
scattering center location, establishes a reference coor-
dinate system. {The scattering centers are local max-
ima in the radar return signal.} The relative distance
and direction of the other scattering centers can be
expressed in radar range and cross-range coordinates,
and naturally tessellated into integer buckets that cor-
respond to the radar range/cross-range bins. For the
examples shown in Figures 6, 7 and 10 - 13 range is
to the right (x axis}, cross-range is up (y axis). The
recognition engine takes advantage of this natural sys-
tem for SAR, where a singie basis point performs the
translational transformation and fixes the coordinate
system to a ‘local’ origin. For ideal data, picking the
location of the strongest scattering center as the refer-
ence point is sufficient. However, for potentially cor-
rupted data where any feature point could be spurious
or missing (due to the effects of noise, articulation,
occlusion, non-standard configurations, etc.), the pro-
cess needs to continue with other scattering centers as
the reference point to ensure a valid feature point is
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these distances to object labels (target type and az-
imuth). The bounds of the table indices (and the
shift amounts) are dictated by the relative distances
between scattering centers of the largest target (the
SCUD launcher with the missile up, establishes a 308
range by 198 cross-range table and the 154 range, 99
cross range shift for all the data). In the recognition
phase, the relative positions of scattering centers are
obtained from the articulated (or occludedg test data.
These relative distances are indices into a look-up ta-
ble which provides the associated object label(s) that
are used to accumulate evidence for target identifica-
tion. The process is repeated with different scattering
centers as reference points, providing multiple ‘looks’
at the database. The target type and azimuth angle
pair with the most ‘votes’ is chosen as the answer.

4.3 Algorithms and Complexity

A single test data or model (object, azimuth angle)
instance i, with M features is represented by relative
range (r} and cross range (c) distance distributions
given by:

ara={ § 1)

where k£ = 1 for the models and 5"k < M(M — 1}/2
(duplicates are removed), while for the test data k > 1
and 3"k = M(M — 1}/2 (duplicates are allowed). In
the recognition phase an object, azimuth model in-
stance i gets votes, Vi, as the intersection of the test
data distance distribution and the distance distribu-
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Figure 9: Relative distance distribution for SCUD
launcher with the missile up.

tion a; for model i

Vi= Z Z atest (7, c)ai(r, c). (2)
T [+
The rule for object identification [ is given by:
I = max{V;} for ali models ({ = 1 to 360 N); (3)

where N is the number of objects. The recognition
engine implements equations ( 1) to ( 3) as a lock-up
table and a decision rule.

The basic steps of the off-line model construction
algorithm are:

1. For each of N Objects do 2:

2. For each of 360 Azimuth angles do 3,4:

3. Obtain the (row, column) locations of the
strongest M peaks from image(Object, Azimuth),

4. For each of M Origins do 5:

5. For each Point from Origin + 1 to M do 6,7:

6. Find the relative Range and Cross-range positions
of the Point from the Origin,

7. Add a new table entry at (Range, Cross-range)

with Object, Azimuth label (add to a list if table
already occupied).

The model construction algorithm complexity is
360 N M (M-1)/2, where N is the number of target
types and M is the number of peaks used. The on-line
recognition algorithm steps are:

1. Obtain the (row, column) locations of the
strongest M peaks from test image.

2. For each of M Origins do 3:
3. For each Point from Origin + 1 to M do 4,5,6:
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- 4. Find the relative Range and Cross-range positions
of the Point from the Origin,

. Look up the list of table entries at (Range, Cross-
range),

6. Traverse the list: reading labels and incrementing
Object, Azimuth label accumulators.

. At completion, select the Object, Azimuth label
with the largest accumulated total. ‘
The recognition algorithm makes M (M - 1%}/2
queries to the loockup table, where M is the number
of peaks used. The only models associated with a
lookup table entry are the “real” model and any other

models that happen, by coincidence, to have a feature
pair with the same relative distances.

5 Results

The XPATCH radar signature prediction code [1]
is used to generate target chips at 360 azimuth angles
(at a 159 depression angle, 90° squint angle) from the
CAD models of the various objects. For 5 objects,
the non-articuiated set used for model construction is
1800 target chips. There are 7 sets of articulated test
data (SCUD Launcher with the rnissiie up, and the
T72, Mlal, and T80 tanks with 60° and 20° turret
angles) for an additional 2520 target chips. The scat-
tering center locations are obtained at local maxima
in the signal amplitude (where amplitude is greater
than the surrounding eight neighbors, if equal reject
unless last in raster scan order}. Examples, at vari-
ous azimuths, of the object geometry, SAR image and
{strongest 50) scattering center locations are shown for
both non-articulated and articulated cases of the T72
(Figure 10), Mlal (Figure 11), T80 (Figure 12), and
the SCUD launcher (Figure 13). (Figures 10 - 13 are
not to scale and the image is displayed at 8 intensity
levels, the scattering centers at 256 levels).

5.1 Articulated Objects
5.1.1 Identification and Pose (4 Object Table)

A 4 object recognition table for the SCUD mis-
sile launcher, T72, Mlal and T80 tanks is con-
structed from 1440 non-articulated target chips using
the model construction algorithm given above. The
experimental results of 2520 trials with articulated
objects for the recognition engine using 50 scattering
centers and this 4 object table are shown as a con-
fusion matrix in Table 3. The overall performance is
a 93.14% probability of correct identification (PCI).
The azimuth accuracy is shown in Table 4, where ‘e’
is an exact match and ‘c’ indicates a match within
+56°. The azimuth results are reporied for the hull
angle. In the case of the Mlal tank, decreased az-
imuth accuracy results when identifications are based
on the (relatively large) turret rather than the hull.

5.1.2 Number of Scattering Centers Used

The number of scattering center locations used is a de-
sign parameter that can be tuned to optimize perfor-
mance of the recognition engine. For the objects and
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turret straight turret 60°

30°Az.

60°Az.

Figure 10: Examples of T72 tank geometry, SAR image and scattering centers for 30° and 60 hull azimuths.

turret straight ‘ turret 90°

90°Az.

120°Az.

Figure 11: Examples of Mlal tank geometry, SAR image and scati;ering centers for 90° and 120¢ hull azimuths.

turret straight turret 90°

150°Az.

180°Az.

Figure 12: Examples of T80 tank geometry, SAR image and scattering centers for 150° and 180° hull azimuths.
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45° azimuth

missile down

missile up

Figure 13: Examples of SCUD Launcher geometry, SAR image and scattering centers.

4 Qbject Table (SCUD tauncher, T72, M1a1, T80)

[ 09+ Oo0000000°‘°‘"°°°°’°°.°..‘....°...-
g ooet
i ® 08t .o -
Table 3: Confusion matrix for articulated identifica- = 07} o 1
tion results (4 object table, 50 scattering centers). 3 .
: - 06 4
i articulated Non-articulated models B _
{ test targets | SCUD | T72 | Mial | T80 E 05 . T
down 0° turret % 04 ©
. SCUD missile up || 360 Z  oal. |
: T72 60° turret 335 7 18 5
90° turret 3271 8 | 25 g 02y ]
; MIlal 60° turret 1 300 | 59 o 01+
90° turret 2 305 53 o . . A . : . . . .
T80 60° turret 360 0 5 10 15 20 25 30 35 40 45 50
90° turret 160 _ Scattering centers used
| Figure 14: Effect of the number of scattering centers
' on articulated recognition rate.
articulations used in Tables 3 and 4, the plot of overall
PCI vs number of scattering centers is shown in Figure
14 (each point is the result of 2520 trials). The maxi-
mum performance is achieved at 50 scattering centers
(93.14%), but virtually the same performance could be
Table 4: Confusion matrix for articulated pose accu- found at 42 scattering centers (93.10%). A more opti-
racy results (e = exact pose, c = pose within +5° ). mal system with 35 scattering centers achieves similar
actioniated Nomartiooiotod models performance, 92% PCI, with slightly less than half the
test targets || SCUD | T72 ] Mial | T80 storage and twice the speed of 50 scattering centers.
down 07 turret
SCUD missile up 1| 360e 5.1.3 Articulation Invariance
I T ggo :z:::: ggg: te Ze The detailed recognition results can be related to the
‘ WiTal80° turret T61C. 2546 To 1o articulation invariance of articulated objects. The
90° turret 2¢ | 272¢ 26le de. le recognition failures for the T72 tank with the turret at
T80 60° turret 356c, 355¢ 90° are plotted on the curve of percent invariance vs
| 80% turret 360e azimuth in Figure 15. These results show that recog-

nition failures generally occur for azimuths where the
percent invariance is low. Figure 16 shows how the
PCI varies with the percent invariance. The points
at low invariance values are misleading, because they
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T72 tank with S0 degree tumet (50 scattering centers)

100 ,
'I_‘a.ble 5 Confusion matrix for articulated identifica~
. tion results (5 object table, 50 scattering centers).
. articulated Non-articulated models
% ool | test targets || SCUD | 172 | Mlal | 180 | FRED
& down 0° turret
g SCUD missiie up 360
T 40t | . 4 T72 60° turret 332 7 18 3
E | 90° turret 327 | 7 25 1
‘|“ Milal 60° turret 1 300 59
20 - 90° turret 2 | 305 | 53
T80 60° twrret 360
. 90° turret 360

0 20 40 60 80 100 120 140160180200 220 240 260 280300 320 340360
Hull azitmuth (degraes)

Figure 15: 'T72 tank (turret 90°) recognition fajlure
plot on articulation invariance curve.

; (2520 triats) SCUD tauncher, T72, M1ai1, T8C

o8 4
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Probabllity of Gomect identification
>
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1015202530354045505560657075808590
Invariance (percent)

Figure 16: Recognition rate and articulation invari-
ance (50 scatterers, average of 4 objects).

are due to a few correct identifications for the Mlal
tank, where the invariance (measured with respect to
the huil) is Iow, yet a correct identification is made
from features on the large turret. The overall recog-
nition engine performance is almost perfect for invari-
ance values greater than 40 percent (ie. down to 60
percent spurious data).

5.1.4 Identification (5 Object Table)

Table 5 shows results with a 5 object recognition table
(50 scattering centers for each model), with the non-
articulated FRED tank (which looks similar to the
Mial tank, see Figure 17) added as a “confuser” in
tests against the same 2520 articulated cases. In only
four cases was a test object confused with the FRED
tank: three times a T72 tank with 60° turret was now
misidentified as 2 FRED tank, once a T72 tank with

Figure 17: Mlal (left) and FRED {right) tanks.

90° turret, that had been misidentified as an Mlal
tank, was now misidentified as a FRED tank. The
overall PCI for the 5 object table (with 50 scattering
center models) was 93.02% versus 93.14% for the 4
object table.

5.2 Occluded Objects

The occluded test data is simulated by starting with
a given number of the strongest scattering centers and
then removing the appropriate number of scattering
centers encountered in order, starting in one of four
perpendicular directions d; (where d; and d3 are the
cross range directions, along and opposite the flight
path respectively, and d and d4 are the up range
and down range directions). Then the same number
of scattering centers (with random magnitudes) are
added back at random locations within the original
bounding box of the chip. Each data set is 5760 test
cases (4 objects X 4 directions X 360 azimuths). For
the non-articulated occluded tests (the objects are the
T72, Mial, and T80 tanks with turret at 0°¢ and the
SCUD launcher with the missile down) there are 51
data sets (for 10, 30 and 50 scattering centers with
10 to 90% occlusion in 10% steps and the same for 20
and 40 scatterers plus 55, 65, and 75% occlusion) for a
total of 293,760 test cases. Actually, only 50 data sets
with a total of 288,000 test cases are used, because the
data set of 10 scattering centers with 90% occlusion
has less than two valid scattering centers for each case.
For the articulated occluded tests the same tanks are
used with a 90° turret and the missile is erect, but
there are only 9 data sets &for 20 scattering centers
with 10 to 90% occlusion) for a total of 51,840 test
cases.
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Figure 18: Recognition rate and occlusion percent.

5.2.1 Non-articulated Occluded Objects

The performance of the recognition engine with non-
articulated occluded objects is shown in Figure 18 in
terms of the probability of correct identification (PCI)
as a function of percent occlusion with the ‘number of
scattering centers used’ as a parameter. The results
of 288,000 test cases are shown, where each point for
a specific percent occlusion and number of scattering
centers is the average PCI for all 4 occlusion directions,
the 4 objects and the 360 azimuths (5760 test cases).
The overall recognition engine performance is almost
perfect for up to 60% occlusion. (This corresponds to
results shown in Figure 18 for articulation invariance
of 40% and above.) By 80 to 90% occlusion, the re-
sults are not much better than the 0.25 PCI one would
expect by chance from the 4 possible objects. These
performance results are replotted as Figure 19 to il-
lustrate the effect of the number of scattering centers
used on the recognition rate for the highly occluded
cases. This indicates that optimal performance is in
the region of 20 to 40 scattering centers.

5.2.2 Articulated Occluded Objects

Figure 20 shows the average and individual test ob-
ject performance of the recognition engine (using 20
scatiering centers) as a function of percent occlusion
with 4 different articulated objects. The results of
51,840 test cases are shown. The overall performance
for these articulated objects with 30% occlusion is a
0.698 PCI, almost the 0.70 system level goal [4] of the
Moving and Stationary Target Acquisition and Recog-
nition (MSTAR) program. The results are consistent
with the average unoccluded articulated results for 20
scatterers, shown previously in Figure 14, which would
be a 0.899 PCI at a “0%” occlusion in the occluded
articulated resuits shown here in Figure 20. Figure 21
compares the performance results of the articulated
and occluded articulated objects for cases with the
same number of valid scatterers (i.e. ‘scatterers used’
in the unoccluded cases or ‘unoccluded scatterers’ in

L e o o50 percent ——|
5 0.9 v 60 porcent -+
T o8| 65 percent o |
é 70 percent —=—
g 07 e T e 76 percent &
2 80 percent -»--
P 06 90 percent' -+~
@
5 05 E
5 04 . 1
%‘ 03} sy = 2 I
3 02t
e
o 01}

0 1 I i

10 20 30 40 50
Scafttering centers

Figure 19: Effect of number of scatterers on occluded
recognition rate.

20 scattering centers, 4 éniculated objects (SCUD, T72, M1, T80}

¢ average —— |

0.9 ¢ . scuUD

08 I
0.7 r =
0.6 +
05t
04 |
03§
02t
0.1} . .

e

x
X O +

+
o

Probability of Correct Identification

0 10 20 30 40 50 60 70 80 90 100
Percent occlusion

Figure 20: Articulated object recognition rate and oe-
clusion percent.

the occluded cases). In the occluded data the valid
points are ‘clustered’ in a neighborhood which gets
smaller as the occlusion increases (and the number
of valid scaiterers decreases). These relatively worse
results for the naturally ‘clustered’ occluded articu-
lated data, compared with the more widely distributed
unoccluded articulated data (for the same number of
valid scattering centers), illustrate the importance of
the relatively rare long distances.

6 Conclusions
The XPATCH generated, six inch resolution SAR
imagery has great azimuthal variation that can be suc-
cessfully captured by using 360 azimuth models for a
iven depression angle. Useful articulation invariant
eatures are found in SAR images of military vehicles.
The feasibility of a new concept for a SAR recogni-
tion engine to identify articulated and occluded ob-
jects based on non-articulated recognition models is
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Figure 21: Articulated object and occluded articu-
lated object performance results.

demonstrated. The performance of the recognition
engine can be predicted by the percent articulation
invariance {or percent unoccluded) when comparing
the scattering center locations of the articulated (or
occluded) test images with the non-articulated model
scattering center locations. Limited experiments show
that scaling to model more objects provides similar
results, although performance will degrade depending
on the number of coincidental similanties found in the
radar signatures of the objects. Our results indicate
the importance of the relatively rare long distances
and suggest an explanation why this approach, which
can use long distances (if available), could have an ad-
vantage over others [7] that are restricted to a “neigh-
borhood”. -

Use of real SAR images of actual vehicles (vs
XPATCH simulations from CAD models) would
change the performance and detailed implementation
of the design, but not the basic conceptual approach.
Our approach of articulation invariance simply treats
the articulated region as a “don’t care”, which ap-
plies to both real and simulated data. If real SAR
images are more (or less) persistent in azimuth than
XPATCH, then the recognition engine would need
fewer (or more) azimuth models. Real SAR images
and target chips are likely to have more noise than
the idea% models and test data produced by XPATCH,
however larger sets of noisy data can be used to pro-
duce useful recognition models. The noisy test data is
manifest as some percentage of spurious data, which is
similar to what was used to generate the occluded test
data and the actual recognition results should suffer
as indicated in Figures 18 and 20 on the Probability
of Correct Identification vs percent occlusion curves
(with the corresponding source of the invalid scatter-
ing centers being noise rather than ‘occlusion’}.
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