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  Abstract   Objective rapid quantifi cation of injury using computational methods 
can improve the assessment of the degree of stroke injury, aid in the selection of 
patients for early or specifi c treatments, and monitor the evolution of injury and 
recovery. In this chapter, we use neonatal ischemia as a case-study of the application 
of several computational methods that in fact are generic and applicable across the 
age and disease spectrum. We provide a summary of current computational 
approaches used for injury detection, including Gaussian mixture models (GMM), 
Markov random fi elds (MRFs), normalized graph cut, and K-means clustering. 
We also describe more recent automated approaches to segment the region(s) of 
ischemic injury including hierarchical region splitting, support vector machine, a 
brain symmetry/asymmetry integrated model, and a watershed method that are 
robust at different developmental stages. We conclude with our assessment of prob-
able future research directions in the fi eld of computational noninvasive stroke 
analysis such as automated detection of the ischemic core and penumbra, monitoring 
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of implanted neuronal stem cells in the ischemic brain, injury localization specifi c 
to different brain anatomical regions, and quantifi cation of stroke evolution, recov-
ery and spatiotemporal interactions between injury volume/severity and treatment. 
Computational analysis is expected to open a new horizon in current clinical and 
translational stroke research by exploratory data mining that is not detectable using 
the standard “methods” of visual assessment of imaging data.      

    1   Introduction 

 Focal and global cerebrovascular insults remain a common and devastating disorder 
in adults and children. The last 2 decades have seen a rapid progression of scientifi c 
and clinical advances due in large part to the implementation and application of 
neuroimaging, including magnetic resonance imaging (MRI), computed tomogra-
phy (CT), and positron emission tomography (PET). Numerous reviews (including 
chapters in this book) highlight the importance of neuroimaging for diagnosis and 
assessment of therapeutic effectiveness  [  1,   2  ] . Visual assessment is used primarily 
to guide clinical decisions for patient care, but what is lacking in clinical and experi-
mental studies is the ability to rapidly extract quantitative data. We summarize the 
current state of computational analytical approaches particularly, as they apply to 
MRI to evaluate focal and global cerebrovascular injuries. Although substantial 
information can be acquired from visual assessment of MR images, it is readily 
apparent that application of computational analytical methods can have substantial 
clinical usefulness (Table  42.1 ). Since these computational advances provide rapid 
and quantitative data, they may assist clinicians in treatment decisions including 
which patients may be candidates for specifi c treatments and to assess where in the 
brain particular treatments could be targeted (e.g., location of stem cell implantation 
or drug injection). Our research efforts have focused on newborns with global or 
focal ischemic injuries in experimental animal model systems, as well as in term 
neonates. However, the computational approaches we describe have broad applica-
bility across a spectrum of ages and diseases.  

 Application of computational assessments to translational stroke research can be 
separated into the following sequential steps: (a) detection of injury and extraction 

   Table 42.1    Benefi ts of computational methods in cerebrovascular disease   

 Minimize or eliminate observer bias for lesion detection 
 Objective quantifi cation of lesion volume compared to manual methods 
 Ability to rapidly acquire computational results compared to manual methods 
 Ability to quantitatively and serially determine changes in lesion volume and extent 
 Differentiate ischemic core from penumbra 
 Quantify regional anatomical injury severity (by use of templates and parcellation) 
 Quantify evolution of injury over space and time 
 Quantify injury–treatment interaction and recovery over space and time 
 Utilizing these information in candidate and treatment selection for therapeutics 
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of lesion volume, (b) estimation of a lesion’s core and penumbra, (c) quantifi cation of 
a lesion’s region-specifi c information based on anatomy, (d) target drug treatment 
or other therapeutic advances (e.g., implantation of neural stem cells: NSC), 
(e)  detection of implanted MR-labeled stem cells, (f) serial imaging and monitoring 
of the interaction(s) between the stroke lesion and treatment effects in space and 
time, and (g) analyzing treatment effectiveness on tissues associated with a lesion. 
Computational methods based on image processing, computer vision, machine 
learning, and pattern recognition techniques have the ability to improve data accu-
racy and yield clinically relevant information. The contents of this chapter are 
focused on current automated methods that are limited primarily to lesion detection 
but also describe several recent approaches to lesion quantifi cation including 
estimation of core–penumbral tissues. We have also applied some of these compu-
tational approaches to monitoring of implanted stem cells in experimental models. 
Finally, we explore several different approaches to future research using brain 
atlases for anatomy-specifi c spatiotemporal monitoring of stroke and stem cell 
interactions.  

    2   Current Computational Approaches for Lesion Detection 

 Visual and manual lesion assessments which are commonly used  [  1,   3–  6  ]  suffer 
from the misperception of contrast due to the parallax effects of neighboring pixels/
voxels—pixels with the same intensity values may look different due to its neigh-
boring pixels  [  7,   8  ] . Issues such as user fatigue related errors in time-consuming 
manual assessment methods and intra- and interobserver variability potentially 
compromise data comparisons. Simplifi ed semiquantitative scoring systems to 
grade injury severity have been useful in grading injury severity in clinical patients 
(e.g.,  [  9–  12  ] ) and in experimental models (e.g., rat pup severity score, RPSS  [  13  ] ). 
Although useful, these simplifi ed scores are grossly subjective and only qualita-
tively measure the extent of injury. Unfortunately, they do not provide objective 
and accurate quantifi cation of injury volumes. Some investigators have developed 
automated lesion segmentation methods that use manual thresholds  [  14  ] , cross-
correlations based on ad hoc templates  [  15  ] , Otsu’s algorithm  [  16  ]  on similarity 
maps of intensity and proximity  [  17  ] , or use manually derived percentage of 
maximum values from apparent diffusion coeffi cient (ADC) maps in neonates with 
stroke  [  6,   18  ] . In most cases, these approaches are ad hoc and are not robust to MR 
signal and noise level variations across different datasets. What has not been devel-
oped are computational methods, based on reliable mathematical models that objec-
tively analyze medical images in a reproducible, quantifi able, and accurate manner 
at near real time speed. 

 Some computational methods have been developed for other diseases such as 
multiple sclerosis (MS)  [  19,   20  ] , focal cortical dysplasias (FCD)  [  21,   22  ] , and white 
matter lesions (WML)  [  23  ] . Since these methods use MRI signal contrast to detect 
abnormalities, they can be modifi ed or extended to evaluate lesion characteristics 



884 N. Ghosh et al.

seen with ischemia or stroke  [  23,   24  ] . Reviewed below are some of the different 
available approaches, focused on automated methods such as GMMs  [  25  ] , MRFs 
 [  26  ] , normalized graph cut  [  27  ] , and K-means clustering  [  28  ]  for the detection of 
brain abnormalities. Although many of these methods have considerable similarities 
and are sometimes indistinguishable, we describe them separately. 

    2.1   Gaussian Mixed Models 

 MR signal intensity of similar brain tissues are expected to be the same. Image 
noise, including the noise within MR images is primarily Gaussian in nature. This 
and the central limit theorem  [  29  ]  (which states that, as the number of data points 
increase toward infi nity, the distribution of data points gradually becomes close to 
Gaussian) imply that different tissues, such as gray matter (GM), white matter 
(WM), cerebrospinal fl uid (CSF), or lesioned tissues, are expected to aggregate 
under different Gaussian curves with their means distinctly separated for easy 
differentiation. Each pixel/voxel has a particular probability to be classifi ed as 
WM, GM, CSF, or lesion, and the highest probability defi nes the tissue type of 
the pixel/voxel. These variations within tissues are modeled by a GMM where 
every pixel/voxel is represented as a weighted sum of Gaussian distributions 
parameterized by (a) weights (or prior probability), (b) means, and (c) standard 
deviations of the individual Gaussian (i.e., tissue) components. With appropriate 
selection of the MRI modality and tissue types, a training set of data can be used 
to learn these parameters by use of an Expectation-Maximization (EM) algorithm 
 [  7  ] . EM iteratively modifi es the parameters namely weights, means and standard 
deviations of the Gaussian distributions to fi t the training data for which the tissue 
class of each pixel/voxel is known. In other words, the EM algorithm maximizes 
the expectation that the data came from the estimated GMM model. A key research 
focus has been on automated MRI segmentation of brain anatomical structures 
(GM, WM, and CSF) using GMM and its derivatives (e.g., constrained GMM; 
CGMM). Greenspan and colleagues have used a CGMM where global intensity 
with local spatial characteristics has been used with EM based parameter learning 
 [  30  ] . Connected component based top-down splitting of the MR regions is done 
to get tissue classes (WM, GM, and CSF) having different mean MR intensities. 
As GMM does not utilize an atlas-based registration it can be applied to other 
disease states or to data where atlases are not yet available. An example of this 
relates to the developing neonatal brain where reliable age-matched atlases have 
not yet been published. These Gaussian distributions can be closely spaced, i.e., 
the mean MR signal intensity of different tissues are close, so that on occasion, 
one needs to consider fuzzy connectedness where class membership values are 
like weights in GMM but with “fuzzyness,” in which the probabilities of a voxel 
being in tissue A and tissue B are assigned  [  31  ] . However, histogram fi tting to a 
normalized histogram, as adapted by Fan and colleagues, cannot be used when 
large lesions affect the shape of the histogram  [  32  ] . 
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 In some cases, the lesion has been modeled as a “reject” class in normal tissue 
models (GM, WM, CSF) where the voxels, not satisfying the GMMs derived from 
the EM algorithm, are detected as lesion  [  33  ] . Agam and colleagues have used a 
mixture-parametric probabilistic model where optimized parameters are found by 
EM-based incomplete log-likelihood maximization for detecting chronic stroke 
lesions  [  24  ] . Probabilistic priors are computed from registered control data sets and 
deviation from these priors in multimodal fused data sets (T1, T2, and diffusion ten-
sor imaging (DTI)) is used to detect the lesion. A key disadvantage of GMM based 
methods is that they break down in analysis of imaging data with a magnetic bias 
fi eld (an unwanted baseline magnetic fi eld in the MRI scanner) as this shifts the 
Gaussian means of the tissues linearly or nonlinearly leading to incorrect tissue 
classifi cation. Bias fi eld correction methods can reduce such problems  [  27  ] . Also 
GMM suffers badly when there are data with large voxel sizes, such as magnetic 
resonance spectroscopy (MRS), where partial volume effects may affect classifi ca-
tion of voxels in tissue borders. Superresolution methods could be used to improve 
performance  [  34  ] .  

    2.2   Markov Random Fields 

 In Markov models, the data points (e.g., MRI voxels or regions) and their different 
possible classes (e.g., WM, GM, CSF, lesion) are represented as nodes of a graph 
where links between the nodes carry a probabilistic association for each data point 
to different classes. MRFs are generally multidimensional where the connected 
lines of the graph are not directed. Tissue types classifi ed as normal/abnormal or 
WM–GM–CSF (or some other user-based classifi cation) are designated as nodes. 
Voxel nodes are defi ned as the observed variables while tissue nodes are the 
estimated or hidden classes. Association of voxel nodes to different classes are con-
trolled by joint probability distributions (i.e., probability of a particular voxel being 
classifi ed as a particular tissue) and represented by lines connecting these nodes. 
Atlas prior probabilities and MRFs have been used to discard partial volume effects 
and reduce outliers in patients with multiple sclerosis lesions  [  33  ] . Kabir and col-
leagues have used multimodal MR data (T2, fl uid attenuated inversion recovery 
(FLAIR), diffusion sequences) and longitudinal data (6 h, 5 and 30 days) that were 
coregistered to form a multimodal MRF  [  35  ] . Using this novel approach, they were 
able to demonstrate that in adults with stroke, the lesion distribution follows the 
vascular territory of an occluded blood vessel. They also generated normalized vas-
cular territory maps that could be utilized for stroke classifi cation and improved 
clinical interventions. The signifi cance of their work is that they demonstrated 
that stroke territories shift over time. Hidden Markov models (HMM), a variant of 
multidimensional MRF, have been used to fi nd WM–GM–CSF tissue types  [  26  ] . In 
another recent study, 3D Hilbert–Peano mapping was used to convert 3D T1 and 
FLAIR data into 1D data for computational ease  [  19  ] . A 1D MRF (Hidden Markov 
Chain; HMC) was then used in the preprocessing step to account for neighbor-
hood information to improve intratissue signal homogeneity and intertissue signal 
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contrast. A likelihood estimator was then used to prune and detect regions not fall-
ing in any of the tissue class (outliers) to identify the lesion as an MS lesion. Finally 
a probabilistic tissue atlas was used to reject false detection. 

 As the number of MR regions and tissue classes increase, the complexities of the 
joint probability distributions in MRF become intractable. Often prior knowledge 
that a particular type of lesion is only localized to a certain brain region simplifi es the 
connectivity of the graph and the associated joint distributions. Similarly, an MR 
region highly associated with a tissue class (e.g., CSF) precludes its possible associa-
tion with another tissue class (e.g., GM), as generally they are not adjacent. This type 
of prior knowledge leads to probabilistic conditional independence with a known 
condition, as one MR region cannot be associated with different tissue or anatomy 
classes. This brings about cause and effect relations between graphical nodes and 
removes some of the connected links in the MRF (based on conditional indepen-
dence).The remaining links are manifested as arrows pointing from a “cause” node 
to an “effect” node of the graph. Bayesian networks (BNs) are such a probabilistic 
graphical model with directed acyclic graphs (DAG)  [  36  ] . BNs also have been used 
to fi nd abnormal tissues  [  37  ] . In these cases, network parameters (e.g., which 
region(s) are connected to which tissue type) are to be learned from training data sets 
with manually derived tissue classifi cation available for each MR voxel/region  [  36  ] .  

    2.3   Normalized Graph Cuts 

 In MR images, voxels with similar signal intensity form regions. The similarity or 
contrast of signal (i.e., coherence or difference) defi nes how strongly two voxels are 
alike (or different). Based on such intervoxel signal comparisons, an MR image can 
be represented as a graph with each pixel/voxel as a node of the graph and connect-
ing (undirected) lines are weighted to represent how strongly the two voxels are 
similar (i.e., from the same tissue class). The strengths of these links are computed 
from the similarity in features of corresponding voxels, such as MR signal intensity, 
texture (in a close neighborhood), and location proximities. This graph can be rep-
resented as a multidimensional matrix and its Eigen vectors can be computed by 
singular value decomposition (SVD). Based on graph mathematical theory, the sec-
ond weakest Eigen vector, sometimes called “Fiddler vector,” defi nes the “weakest 
link” between two strongly connected “subgraphs”  [  38  ] , for example a separating 
plane between WM and GM tissue types in T1/T2 weighted MRI. If we apply nor-
malized graph cuts (N-Cut) for solving MRFs, the basic graph cut algorithm ensures 
near global minimum of the energy function of the MRF. As N-Cut algorithms often 
suffer from oversegmentation due to artifacts and noise, age-matched control atlases 
or probabilistic tissue models can be useful  [  27  ] . Such prior tissue models and 
N-Cut methods have been used to separate WM, GM, and CSF regions where itera-
tive algorithms alternate between N-Cut based segmentation and atlas based inho-
mogeneity corrections. In other words, small outlier regions that are detected inside 
large correctly classifi ed tissue (due to signal inhomogeneity) are modifi ed to have 
a better match with the atlas.  
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    2.4   K-Means Clustering 

 GMM and MRF typically require training datasets with manually detected lesions 
(ground truth) to assist in supervised learning. When such ground truths are not 
available, unsupervised learning can be used by evaluating MR image clusters based 
on the cohesiveness of voxel features such as MR signal intensity, location, texture, 
etc. Cluster cohesiveness can be measured as the ratio between the intracluster 
standard deviation and the intercluster mean distances, that is, how distant the 
clusters are from each other  [  29  ] . Freifeld and colleagues have used K-means clus-
tering to detect multiple sclerosis lesions from T2-weighted images  [  25  ]  where they 
have used a multimodal approach, starting with CGMM-based initial grouping of 
tissue types (WM, GM, CSF) that iteratively split the tissue regions  [  30  ] . Then they 
have used expert rule based and multimodal fusion of MR images (T1, T2, and 
proton density MRI) to robustly identify small lesions. Since multimodal fusion 
often blurs the boundaries between the regions they utilized active contours to 
sharpen the boundaries. 

 In some instances, after CGMM based initial tissue segmentation, deformable 
models along with K-means clustering have been used to improve MRI tissue clas-
sifi cation within the brain so as to generate a tissue type atlas  [  28  ] . In these heavily 
model driven approaches, lesions of a known shape can be readily identifi ed if the 
lesion encompasses an entire brain region (e.g., putamen) but this approach does not 
work when the lesions cross anatomical boundaries, as is the case in the majority of 
stroke patients. When data clusters are too close to one another, partial or fuzzy 
association to neighboring clusters (i.e., classes) can be used, just like the previ-
ously described fuzzy concept in the GMM approach. Spatially constrained fuzzy 
kernel clustering methods have been used to estimate MR bias fi elds, which need to 
be corrected for improved brain atlas generation or GMM-based lesion detection 
 [  39  ] . This also accelerates the usually slow kernel-clustering method in high dimen-
sional feature space  [  39  ] . Before applying these types of bias correction methods, it 
should be kept in mind that in some situations, small lesions can be classifi ed as an 
artifact and hence removed as an outlier. Fuzzy clustering has also been used to 
detect gray matter atrophy in MS lesions using a fusion of probability maps (from 
brain morphology), signal intensity (from MRI), and brain anatomy (from atlas) 
 [  40  ] . A similar method, K-nearest neighbor method, has been used for WM–GM–
CSF classifi cation after tissue probability models or atlases were registered to the 
data  [  23  ] . The MRI was intensity-rescaled after truncating high-low outliers. WM 
lesions were detected from the histogram of the WM only.  

    2.5   Other Methods 

 Lesion detection can be improved by preprocessing the MR images using spatial 
regularization or congruity by MRI textures  [  41,   42  ] , probabilistic models  [  24  ] , 
morphological operations  [  43  ] , and physical model estimation  [  44  ] . In some 
instances, multiple MRI modalities can be used sequentially to achieve better 
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insights into the clinical relevance of the imaging abnormalities. Dugas-Phocion 
and colleagues used EM based temporary grouping of tissue types (WM, GM, CSF), 
thresholded the voxel-wise MR signal differences to fi nd supratentorial MS lesions 
in T2 FLAIR, and then proposed T1/T2 lesion differences as the possible internal 
structure of the lesion  [  20  ] . They registered all the modalities for voxel wise com-
parisons. For multimodal fusion, a key requirement is coregistration to a standard 
space which often severely suffers when different modalities have different resolu-
tions. For example, functional MRI (fMRI) data or MRS derived metabolite ratios in 
different anatomical brain regions are often acquired at a coarse resolution (i.e., large 
voxel size) compared to T1 or T2 anatomical data  [  45  ] . The common method of 
down sampling high resolution T1/T2 data and working on the coarse functional 
space is relatively simple but associated with loss of small variations due to the large 
voxel size. Attempts have been made to improve the resolution of fMRI to overlay 
onto high resolution anatomical spaces using ad hoc methods  [  45  ] . Application of 
superresolution technologies that have been used in the computer vision fi eld may 
help to overcome partial volume effects when merging low to high resolution 
MR data  [  34  ] .   

    3   Recently Emerging Approaches for Automated 
Lesion Detection 

 Several disadvantages of current approaches to lesion detection have hampered their 
widespread translational use. First, computationally intensive mathematical models 
are generally used that hinder rapid estimation of the size and nature of the lesion 
which is time sensitive when used clinically  [  19,   21,   25,   30,   39  ] . Second, many cur-
rent methods use anatomical brain atlases and a priori probabilistic tissue models 
 [  23  ]  to facilitate lesion detection and reject outliers  [  19,   33  ] . However, neither 
atlases nor probabilistic models are always statistically valid for the data being eval-
uated (e.g., stroke data may have distortions and structural uniqueness that cannot 
be mapped well to an atlas) and may lose information during spatial registration of 
the injured brain to the atlas brain. Since ischemic and stroke lesions often cross 
anatomical boundaries, the use of modeling or atlases or priors is likely not justifi ed. 
In addition, none of the current research has the capability of analyzing the internal 
structure of an ischemic/stroke lesion which ultimately may be relevant for clinical 
treatment decision making (see  [  20  ]  for an exception). Finally, compared to other 
neurological disorders, there has been little research dedicated to automated detec-
tion and quantifi cation of ischemic injury  [  35  ] . 

    3.1   Hierarchical Region Splitting 

 Hierarchical region splitting (HRS) is an automated region segmentation method 
that splits MR images recursively to generate a binary tree-like structure (Fig.  42.1 ). 
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The subimages are based on the uniformity and contrast in MR signal (intensity or 
quantitative values) that are representative of the underlying tissue characteristics 
(e.g., normal vs. injured brain). Recently, we have reported that HRS can detect and 
extract neonatal hypoxic ischemic lesion volumes, with excellent volumetric cor-
relations ( r   2   = 0.95;  P  = 8.6 × 10 −7 ) and overlap (sensitivity: 0.82, specifi city: 0.86, 
similarity: 1.47) to manually extracted results  [  32  ] . Although the methods and 
results of HRS were obtained from MR images, HRS is a generic method for any 
medical image (e.g., MRI, PET, CT) where contrast in the medical image is used to 
detect abnormalities.  

 The key steps for HRS detection of ischemic/stroke lesions (Fig.  42.1 ) are: (1) 
 MR image rescaling : MR images are rescaled to an image intensity range [0–255] 
and the pixel wise conversion factors are stored to map the automatically derived 
results back to their original MR values or intensities. (2)  Derive image histogram : 
A histogram of the MRI is computed. (3)  Compute adaptive segmentation thresh-
old : The image histogram is then modeled as a bimodal distribution with two dis-
tinct and distant peaks, which segregates the MR images into two different tissue 
regions (Fig.  42.1a ). The valley between the histogram is then computed and acts as 
an adaptive threshold that is used to split the image into two subimage regions that 
have uniform image intensity or values  [  16  ] . Each histogram peak is representative 
of a region with a minimum intraregional image variance and a maximum interre-
gional image variance. (4)  Recursive bimodal segmentation : The adaptive image 
segmentation step is now used recursively to split each of the resultant subregions 
(subimages) to generate a tree-like hierarchical data structure (called HRS 

  Fig. 42.1    HRS methodology. ( a ) T2 histogram: T2WI is rescaled (T2 ¢ ) to intensity range (0–255). 
The HRS method fi ts a bimodal distribution and detects a valley at  T2  ¢  = 169 as the threshold to 
split the histogram. This splitting is repeated recursively (next level thresholds are  T2  ¢  = 149 and 
189). ( b ) HRS tree: Segmenting the T2WI into regions with T2 ¢  values in these particular ranges 
in ( a ) form the HRS tree. Subimages in ( b ) are rescaled for enhanced visualization. HRS automati-
cally detects the right image in Level 1 as the ischemic lesion. HRS further segments the lesion into 
the core and the penumbra regions in Level 2. Note that only part of the complete HRS tree is 
shown       
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tree; Fig.  42.1b ). Each segmented region at any level of the HRS tree is the MRI 
data within two threshold values. (5)  Criteria for stopping segmentation : Recursive 
image segmentation is continued until each of the resultant subregions/subimages 
have uniform image intensity based on these criteria: (a) individual connected 
regions are small and unlikely to be partitioned further into separate subregions 
(i.e., different tissues); (b) the image intensity or value for each subregion has a 
low standard deviation value (i.e., if from MRI, uniform MR physical properties); 
and (c) the image histogram of the segmented region has a low kurtosis value 
(i.e., a sharp histogram peak that cannot be split further). 

 When the medical image contains bone (e.g., skull) and CSF regions, HRS can 
be employed using a different set of parametric values to separate these unwanted 
regions leaving only brain tissue for recursive splitting. Use of automated HRS 
avoids manual skull stripping which is time-consuming. To detect small lesions, 
HRS further splits the skull-stripped brain using a different set of parameters. For 
this, as the HRS criteria for stopping segmentation, smaller limits for area, standard 
deviation and kurtosis are used that provide a deep-rooted HRS tree with small 
subregions. Finally, HRS can use previously established normative data (from 
published studies or experience) to provide a generic range of image values (a) for 
normal appearing brain matter (NABM) and injured tissues (e.g., stroke), (b) for the 
particular neuroimaging modality being used (e.g., MRI T2, diffusion weighted, 
etc.), and (c) for the appropriate imaging time point (e.g., relevant to the time point 
post ischemia/stroke onset as neuroimaging values change). Because T2 relaxation 
and diffusion coeffi cient (ADC) values change with brain development or with 
injury, or both, they need to be adjusted for accurate lesion detection. 

 Based on our application of HRS in a neonatal model of hypoxic ischemic injury 
we have determined an approximate range of MR image values that are useful for 
temporal discrimination of normal appearing brain matter and lesion (Table  42.2 ). 
Means of the subregions from the HRS tree are compared with these a priori known 
tissue values. The subregions with their mean values within the MR property range 
for the injury in Table  42.2  are merged to obtain the fi nal HRS detected lesion  [  32  ] . 
This is repeated for each imaging modality and at each imaging time point consid-
ered in the study. This HRS approach results in excellent HRS detected ischemic 
lesions (Figs.  42.1b  and  42.2a ) at two time points (4 and 14 days post hypoxia 

   Table 42.2    T2 and ADC values for tissue-types over time in rat pups   

 ADC (×10 −5  mm 2 /s)  T2 (ms) 

 Age (days) a   NABM 
 1–2 days 
lesion 

 Fe-labeled 
NSC b   NABM 

 3–7 days 
lesion 

 Fe-labeled 
NSC 

 10–12  60–150  <40  –  30–50  >80  <20 
 13–17  60–120  >150  –  50–80  >100  <40 
 >17  60–100  >120  –  50–100  >120  <50 

  The MRI range of values were used as prior knowledge in HRS based stroke and stem cell 
detection. 
  a HII was induced at postnatal day 10, followed by serial imaging (see Obenaus et al.  [  73  ] ). 
  b Iron-labeled NSC ADC values were not extracted as T2 is a more sensitive modality.  
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ischemia). In other neurological diseases, the HRS threshold values are likely to 
vary; however, typically the image value ranges between NABM and abnormal 
regions are widely separated and can be used to automatically distinguish abnormal 
from normal tissue. Compared to current lesion detection approaches (see above) 
that depend heavily on tissue models, HRS is a generic method that adapts to any 
type of medical image, injury and across the age spectrum.    

    3.2   Support Vector Machine 

 At the present time, HRS has utilized only the MR signal or MR value as the 
primary image feature to classify pixels/voxels. However, other image features from 
multiple (registered) modalities such as signal intensities, textures  [  41,   42  ] , proxim-
ity  [  17  ] , shape indices, probabilistic indices from anatomical atlases, and prior 
knowledge  [  23  ]  can be used to classify any voxel. The feature sets from each pixel 
(or region) from each MR image creates a singular data point within a multidimen-
sional feature space. 

 Our ultimate goal is to defi ne a set of image features that robustly separate isch-
emic/stroke volume from normal brain tissues. In mathematical terms, within the 
feature space, we wish to fi nd a surface, one side of which has data points from the 
normal brain while the other side having data points from the lesion. The data points 
in both classes that are closest to separating this hyperplane are the most error 
prone points and defi ne the “functional margin”  [  46  ] . Instead of defi ning ad hoc the 
location of a hyperplane, it is best to identify this separator adaptively from the data 
itself. One approach is to use a “training data” sample that has the features of interest, 
as well as a manually determined classifi cation (e.g., stroke, NABM). Once a hyper-
plane or classifi er is trained using a supervised learning method (e.g., EM algorithm), 
a new data point without any manual detection (i.e., “testing data”) can be classifi ed 
based on the output of the discriminating function (learned during the training phase) 
by determining on which side of the classifi er surface the new data point falls. 

 Support vector machine (SVM) is one such supervised machine-learning algo-
rithm that searches for nonlinear classifi er surfaces within the feature space that 
separates different classes  [  47  ] . For example, after registering T2 and ADC maps of 
an injured brain, T2 relaxation values and diffusion coeffi cients are used as the 
voxel feature in SVM (Fig.  42.2b ), and normal brain tissue, lesion core, and lesion 
penumbra are separated by nonlinear curves. If the feature space does not reliably 
separate tissue classes, different combinations of the features can be used to gener-
ate more complex features that would assist in differentiating the tissue features. 
This process is done by projecting current feature-set to a higher dimensional 
feature space using kernel functions that are nonlinear functions of the simple fea-
tures such as the T2 and ADC values. The underlying assumption is that a better 
nonlinear hyperplane (separating tissue classes) could be learned in this new feature 
space. SVM attempts to maximize the “functional margin” of the hyperplane or a 
separation that maximizes accuracy and distance between the separating plane and 
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most data points  [  46  ] , leading to improved tissue identifi cation. Recently, SVM has 
been used to detect FCD from texture features derived from MRI  [  21  ] . Initially, gray 
matter was found by registering to an atlas and gray matter textures were derived 
from statistical gray level cooccurrence and “run length” features (i.e., for how 
many pixels/voxels the same classifi cation continues in different image directions). 
In the texture space, SVM is then trained and used to separate relatively small gray 
matter lesions. 

  Fig. 42.2    Lesion core and penumbra detection by HRS and SVM: ( a ) HRS detected core ( red ) and 
penumbra ( blue ) at 4 and 14 days post ischemia using T2 maps. SVM detected core and penumbra 
from T2 and ADC maps (after spatial coregistration) at 4 days post injury. The core–penumbra 
relative percentages and locations change considerably from 4 to 14 days, illustrating a temporal 
evolution of the ischemic lesion. ( b ) SVM feature-space with T2 and ADC values of the voxels in 
4d (post ischemia) data in ( a ) and nonlinear classifi cation surfaces learned by segmentation of 
normal tissue ( white ), core ( pink ) and penumbra ( yellow ) of the lesion. ( c ) In addition to core–
penumbra overlap, T2 and ADC means for normal tissues, core, and penumbra that were 
detected by HRS and SVM reveal excellent concordance       
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 Higher “functional margins” would be associated with lower generalization 
errors in the test set. Incremental learning can then be used where classifi cation for 
the test data is validated by an expert (e.g., a physician, researcher) and this feedback 
may be incorporated to improve the SVM classifi er. At different imaging time points, 
different sets of features may be more effective in classifying the same tissue (nor-
mal tissue, ischemic/stroke lesion or presence of implanted stem cells). Different 
training data sets may be needed to train different classifi ers for different time points 
to better extract the evolving lesion. Following coregistration of ADC and T2 maps 
in a neonatal model of ischemia, an SVM based classifi er effectively separated the 
lesion from NABM as well as discriminating putative ischemic core and penumbra 
regions (Fig.  42.2a, b ). The advantage of SVM compared to HRS lies in its ability to 
adaptively learn the classifi er by a training set of data and to utilize multiple features 
(e.g., intensity, texture, shape, etc.), but at the cost of being more computationally 
intensive (than HRS) for training, that can limit throughput. Comparative results in 
Fig.  42.2a, c  show that HRS and SVM detected lesion regions overlap almost identi-
cally. Thus, identifi cation of similar regions using two completely different compu-
tational methods to detect the lesion strengthens the validity of both results. However, 
HRS will be more effective for single feature based classifi cations, whereas SVM 
will be more useful when multiple features are used to classify the data.  

    3.3   Brain Symmetry-Based Approaches 

 Normal brains are highly symmetric and this has been used for automated brain 
segmentation  [  48  ] . However, in stroke and other diseases (as well as in translational 
models), injury areas are often asymmetric (Fig.  42.3a ), i.e., the region contralateral 
to a stroke is often normal, albeit with signifi cantly different MRI signals. Asymmetry 
itself can be used as a prominent feature for identifi cation of brain injuries. Examples 
of asymmetry detection in brain injury and disease include tumors from T2-FLAIR 
images  [  49  ] , MS plaques from T1 and T2 weighted images  [  48  ] , and FCD using 
textures in T1 weighted image  [  22  ] .  

 Recent studies have reported a fully automated symmetry integrated detection 
method for stroke  [  50,   51  ] . Like most current automated (and manual) methods, a 
brain region is detected as abnormal when regional properties such as symmetry 
deviate from those for NABM. The regions of the brain that are not symmetric are 
hypothesized as the regions involved in the injury and are then further tested for the 
presence/absence of injury. Key steps of this approach are summarized in Fig.  42.3 . 
From the input MR image (Fig.  42.3a ), the axis of symmetry (AoS) is fi rst estimated 
(Fig.  42.3b ) and a “symmetry affi nity matrix” (Fig.  42.3c ) is computed based on 
intensity similarity between mirror-symmetric locations of the two sides of the AoS. 
A symmetry integrated region growing method is then applied to segment 
symmetric and asymmetric regions (Fig.  42.3d ) followed by kurtosis and skewness 
measurements of symmetry affi nity to extract the asymmetric region(s) (Fig.  42.3e ). 
For increased robustness to variations in MRI and lesions, the symmetry affi nity 
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matrix (Fig.  42.3c ) is also separately processed using a 3D gradient relaxation algo-
rithm for clustering and identifi cation of asymmetric groups (Fig.  42.3f ). The results 
from Fig.  42.3e, f , are then fused to obtain refi ned asymmetric regions (Fig.  42.3g ). 
Finally a GMM/EM based supervised classifi er is trained (from “training data”) and 
applied to classify asymmetric regions into injured and healthy tissues using image 
signal intensity and 3D asymmetry volumes to quantify the stroke lesion (Fig.  42.3h ). 
Using this approach, we found that automated symmetry identifi ed lesion volumes 
varied only by an average of 7.53%, compared to manually identifi ed lesion vol-
umes  [  50,   51  ] . 

 The key advantages of the symmetry method are that it is not dependent on the 
patient or stroke age or a priori knowledge of NABM and lesion ranges (see 
Table  42.2 ), and it does not require registration with an atlas or prior models. 
However, disadvantages include that it is more computationally intensive than HRS, 
can fail to identify an AoS when a severe injury causes bilateral hemispheric 
alterations, and can fail to detect injury regions if the stroke is diffused or global in 
nature when mirror-symmetric regions from both hemispheres are injured  [  32  ] . 
In these cases, other types of “prior knowledge” may be used and currently are 
being investigated.  

  Fig. 42.3    Symmetry-based lesion detection. Results are shown of a symmetry-integrated lesion 
detection method in a term newborn with stroke using ADC. From ( a ) the original ADC, ( b ) the 
axis of symmetry (AoS) is detected ( dotted line ). ( c ) A symmetry affi nity matrix is computed 
where brighter ( yellow ) regions are more asymmetric across the AoS. ( d ) Symmetry-integrated 
region-growing extracts these initial asymmetric regions ( e ) that are then modifi ed using kurto-
sis–skewness measures of the regions. ( f ) Separately, asymmetric clusters are also detected from 
3D gradient relaxation algorithm. ( g ) Robust asymmetric regions are computed from the fusion 
of the detected regions in ( e ,  f ). ( h ) Finally GMM/EM classifi es the stroke regions from the 
asymmetric regions in ( g )       
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    3.4   Watershed-Based Segmentation Approaches 

 Watershed approaches to injury detection attempt to model a medical image as a 
topographic map and fi nd the regional (local) maxima in the altitude as segmenta-
tion boundaries. For instance, the signal values in a brain MR image can be thought 
of as the altitudes on a topographic map. If a drop of water falls on this relief, it can 
take different paths to fi nally reach a local minimum, called a “catchment basin.” 
For MRI, the lowest signal regions represent these local minima and regional 
maxima form the crests or watersheds. Watersheds are the limits of the adjacent 
catchment basins and represent the image segmentation boundaries. The path of 
the downward water fl ow in the watershed model is similar to the minimization of 
signal energy (from MRI intensity or its contrast), that can be modeled by estab-
lished methods such as simulated annealing, gradient descent, genetic algorithm, 
etc.  [  29  ] . The watershed method has a rich history of success in image segmentation 
 [  52–  56  ] . In general, MRI contrast based edges are estimated during image prepro-
cessing and based on the MR image gradients, the contrast edges are merged to 
defi ne tissue segmentation. Improved watershed methods have been used suc-
cessfully to segment knee cartilage and normal brain tissues (GM, WM, CSF) with 
a tissue probability map (prior knowledge) registration  [  57  ] . 

 Recently we have used a modifi ed watershed method  [  58  ]  to detect experimental 
and human hypoxic ischemic lesions. Initially, a multiparameter calculation was 
done to compute pixel features such as image contrast edges (by Sobel edge 
detector  [  7  ] ), gray-scale intensity values, and mean gradient values of the pixel with 
its 8-connected neighborhoods (i.e., the local contrast)  [  7  ] . These pixel features are 
considered as the altitudes of the water basin. The water starts at the local maxima 
and fl ows along certain paths that have been defi ned by a genetic algorithm (GA) 
based energy minimizer to fi nally reach the local minima  [  59  ] . To reduce overseg-
mentation effects, which are a critical drawback of the watershed method, a similarity 
based region-merging was then performed. Finally, stroke/ischemic lesions were 
extracted by utilizing the prior knowledge of mean and standard deviations of stroke 
regions from MRI, based on similar experimental or clinical neuroimaging data. 
This process readily detects the ischemic injury in a rodent brain (Fig.  42.4a ) and 
some false positive regions that illustrate the oversegmentation that occurs using the 
watershed approach.  

 The GA  [  59  ]  that was utilized as an energy minimizer in the watershed model 
 [  58  ] , allows pixel features (edge, signal intensity, and local contrast) to form an 
energy topography of the brain MRI. GA starts with a set of randomly selected 
pixels and iteratively searches for pixels with the lowest variation around it 
(i.e., pixels with the lowest contrast energy). For any particular iteration, each pixel 
X is compared with its neighboring pixels and is then replaced by a neighboring 
pixel Y that is most dissimilar to the original pixel. This process continues until 
little variation is found in the neighborhood of the pixels contained in the searching 
set and results in reaching the local energy minima (catchment basins). Small 
outliers (shallow basins) may contain a few pixels within the current searching set 
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but that do not fulfi ll a trend or criteria (called “fi tness” in GA terminology). These 
outlier pixels are replaced by the same number of new pixels. Replacement is 
done using random or rule-based techniques that mimic biological evolutionary 
processes, such as “crossover” (rule-based replacement), “mutation” (random 
replacement), etc. In this way, the GA based energy minimizer gradually fi nds the 
catchment basins from which the watersheds (crests) are computed that segment the 
medical image into normal and abnormal tissue regions. 

 Disadvantages of the watershed method include oversegmentation, sensitivity 
to signal-to-noise ratio (SNR), or poor detection of thin or low SNR brain struc-
tures. A comparative example (Fig.  42.4b ) illustrates that the modifi ed watershed 
method detects outliers while the symmetry-integrated method performs 
much better. In addition, prior information using brain atlases or tissue 
probability masks can improve segmentation results  [  57  ] . However, maturational 
age-dependence and registration related complexities and uncertainties, specifi -
cally in injured brains, may limit the ability of watershed methods in medical 
image segmentation and lesion detection. Research continues to progress towards 
solving such limitations.   

    4   Future Directions in Computational Stroke Assessment 

 The above overview describes well-established mathematical approaches for the 
detection of ischemic lesions. Further adaptation could identify signatures within 
globally injured tissues. While little has been reported, the approaches described 
below could further delineate tissue level changes. 

  Fig. 42.4    Detection of ischemic injury using the watershed method. ( a ) Ischemic injury in a neo-
natal rat brain can be detected ( red outline ) with some outlier regions being identifi ed as injured 
tissues due to oversegmentation inherent in watershed method. ( b ) Comparative results for the 
symmetry-based and watershed methods along with the manually detected ground-truth (“gold 
standard”) show that the symmetry-integrated approach performs better than the watershed 
method       
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    4.1   Detection of the Ischemic Core and Penumbra 

 Assessment of salvageable/nonsalvageable tissues and their evolution after a stroke 
is paramount for candidate selection for therapeutic interventions as well as for 
monitoring recovery and improving outcome prediction. Tissues within an ischemic 
lesion are not homogenous. Improved MRI-based estimation of the irreversibly 
injured core and the potentially salvageable penumbra may lead to better approaches 
for stroke treatment. Postmortem histology  [  60  ]  is still considered to be the most 
reliable method for identifying the core and penumbra but is not clinically applica-
ble. Instead, we have pursued an MRI-based noninvasive estimation of the core/
penumbra. We have recently reported in a model of adult rodent ischemia that the 
expression of the astrocytic marker, glial fi brillary acidic protein (GFAP), was 
reduced in the penumbra. The penumbra region of interest (ROI) in GFAP pictures 
was initially localized manually but then confi rmed and quantifi ed semiautomati-
cally using manually derived intensity-based threshold, morphological cleaning, 
then automated volume computation  [  61  ] . While we initially used immunohis-
tochemical approaches to identify the penumbra, we sought to extend these studies 
for use to in vivo neuroimaging. 

 Current approaches to differentiate the core from penumbra rely on mismatch 
between diffusion weighted imaging (DWI) and perfusion weighted imaging (PWI) 
in relevant brain regions and this measure has been used clinically for more than a 
decade  [  62,   63  ] . However, a recent study has detailed several critical drawbacks of 
this method  [  64  ] . When using DWI and PWI, visual (subjective) estimation of the 
penumbra volume is performed  [  62,   63  ] , or ROIs detected from one modality are 
manually traced on the other to estimate the mismatch  [  65  ] , or manual registration 
between these two imaging modalities is performed to measure the mismatch  [  66  ] . 
These approaches are neither statistically reliable nor objective. What is required is 
an automated multimodality coregistration method between DWI and PWI  [  67  ] . 
Previously, one study has proposed T1/T2 lesion differences as possible measure 
of internal structure of supratentorial lesion  [  20  ] , but this approach remains limited 
as it requires multimodality registration and has not been further validated. 

 We are investigating how variations between MR signal intensity/values within 
the ischemic/stroke lesion from a single MRI modality (e.g., T2WI or ADC) could 
discriminate core from penumbra. Because the human eye often cannot distinguish 
these subtle MR signal variations within the stroke, automated methods such as HRS 
or SVM (Fig.  42.2a ) may be more sensitive, time-saving, and accurate. We have 
been able to verify our initial automated core/penumbra detection using immunohis-
tochemical validation (Fig.  42.5 ). In the HRS tree (Fig.  42.1b ), we fi rst detect the 
ischemic lesion and then continue recursive lesion splitting into more uniform sub-
regions. This subdivision allows us to detect the core (higher T2 values) as well as 
the penumbra (lower T2 values; Fig.  42.1b ). The core/penumbra separation is auto-
matically determined from the data based on the actual T2 means of the lesion sub-
regions and prior expert knowledge (Table  42.2 ). Results from our animal data 
demonstrate that core/penumbral regions extracted using the HRS method matched 
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remarkably well with immunohistochemical staining (Fig.  42.5 ). We used four 
molecular markers that have been previously characterized in stroke  [  60  ] ; (1) heat 
shock protein 27 (HSP27) is a stress-induced protein that can be found in both astro-
cytes and neurons within the penumbral tissues, (2) HSP70 (also known as HSP72) 
is restricted mostly to penumbra tissue, primarily in neurons, (3) glial fi brillary 
acidic protein (GFAP   ) as a marker for reactive astrocytes, that are often found in the 
penumbra, and (4) microtubule associated protein 2 (MAP2) which stains primarily 
for infarct core tissues and is a global marker for cytoskeletal degradation, indepen-
dent of cell type.  

 After semiautomated image registration of immunohistochemical images and 
MRI of injured brains, good overlap was obtained for the core (sensitivity: 0.60, 
specifi city: 0.95, similarity: 0.83) and the penumbra (sensitivity: 0.59, specifi city: 0.89, 

  Fig. 42.5    Computational core–penumbra delineation compared to immunohistochemistry. 
( a ) HSP27 immunoreactivity (−ir) ( bright region ) and activated HSP70-ir ( bright region ) illustrate 
the tissue encompassed by the penumbra (see text). Regions of hypointensity ( dark regions ) MAP2 
staining reveals the lesion core. The core ( red ) and penumbra ( blue ) detection by HRS on T2WI 
matches well with corresponding immunohistochemical detections. ( b ) The core ( darkest region ) 
and penumbra ( less dark area  around the core) manually detected in GFAP stained section also 
match well with the HRS detected core ( red ) and penumbra ( blue ) in a corresponding T2WI       
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similarity: 0.65) regions of the ischemic injury  [  68  ] . Our fi ndings suggest that HRS 
has the ability to detect the core/penumbra regions from a single MR modality (as 
compared to two modalities when DWI/PWI mismatch is used) and also avoids the 
error prone registration step with DWI/PWI. We performed HRS detection of core/
penumbral regions from T2 and ADC maps in several different animal models of 
ischemia  [  5,   13  ] . In addition, we have been able to detect core/penumbra in term 
neonates suffering from ischemic perinatal stroke (Fig.  42.6 ).   

    4.2   Detection of Implanted Stem Cells in Ischemic Brain 

 Given the current and future interest regarding stem cell therapy, computational 
approaches to rapidly, objectively and automatically identify these cells in the brain 
or other organs would have unprecedented utility. We have applied computational 
approaches to identify neural stem cells (NSCs) implanted following rodent 
neonatal hypoxia ischemia. NSCs inhibit scar formation, diminish infl ammation, 
promote angiogenesis, provide neurotrophic and neuroprotective support, and stim-
ulate host regenerative processes  [  2,   69  ] . Behavioral and anatomical improvements 

  Fig. 42.6    Core–penumbra detection in clinical stroke. HRS based core ( red ) and penumbra ( blue ) 
detection in a neonatal brain 3 days after stroke. Core regions might be disconnected across 
consecutive MR slices and a particular MR slice may have only penumbra ( no core ) visible       
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(lesion volume reduction) after NSC implantation in ischemic brain have been 
reported  [  70  ]  and immunohistochemical data have shown that NSCs integrate into 
injured tissues and develop functionally active connections  [  70  ] . 

 To noninvasively monitor implanted NSCs, several labeling techniques have 
been utilized including, MRI T1-shortening agents (i.e., gadolinium-diethylene tri-
amine pentaacetic acid (Gd-DTPA) labeling)  [  71  ] , positron emitting isotopes in 
PET  [  72  ] , and MRI T2 shortening contrast agents (i.e., Feridex, iron oxide labeling) 
 [  73  ] . We have utilized iron oxide labeling of NSCs to noninvasively visualize these 
cells as they migrate and replicate in ischemic tissue in translational HII models, 
even as long as 58 weeks after injury  [  2,   73  ] . However, the majority of current NSC 
detection methods are performed by visual  [  74  ]  or ad hoc thresholds or templates 
 [  15  ] . NSC locations are currently manually evaluated by observation of MR visible 
signal voids (iron labeled NSC) at some distance from the implantation site  [  2  ] . 
Reported studies on replication (i.e., proliferation) of NSCs, including our own 
calculated proliferation index (CPI), also lack region- and cluster-specifi c quantifi -
cation  [  2,   73  ] . NSC proliferation or replication is defi ned as an increase in the 
number of NSCs (quantifi ed by volume and cell density), within a particular NSC 
cluster over time. However, cellular density cannot be adequately determined using 
visual methods, hampering true quantitative measurements of replication. Recent 
studies have attempted to quantify the amount of iron, hence the number of NSCs, 
using susceptibility weighted images (SWI) and maps  [  75  ] . While location is impor-
tant, the number, density, and replication of these NSCs are equally critical. A recent 
review on NSC therapy noted that the lack of computational NSC monitoring tools 
has hindered fi nding spatiotemporal characteristics of implanted cells  [  76  ] . Objective 
(computational) cellular tracking using feature based matching of NSC clusters 
(correspondence) at different time points will be required. In addition to NSC 
volumes, a feature vector developed for individual NSC clusters should contain 
characteristics that include MR signal intensity or values, 2D/3D shapes, cellular 
density (measure of signal void), and differences in the gradients of cell density 
inside (subregions) and outside (gradients across boundary) for each NSC cluster. 
NSC characteristics (e.g., detectability, density, migration, and replication) will be 
dependent on their location relative to the HII lesion and the time after implantation. 
Computational methods could noninvasively quantify and derive the speed/direc-
tion of NSC migration, the correlation between migration and cell density variations 
in NSC clusters, and when, where, and how many NSCs replicate. Such “online” 
data extraction and analytical approaches are necessary to assure that NSCs have 
been appropriately implanted, that they remain viable, reach their injury targets, and 
that host safety after implantation is not compromised. 

 We have used a deep-rooted HRS tree paradigm (Fig.  42.1b ) that can segment 
very small brain regions based on low kurtosis and low standard deviation values 
from T2 images and T2 maps. Using previous knowledge (Table  42.2 ), we reliably 
detected iron-labeled implanted NSCs from T2WI (Fig.  42.7 ). Our HRS auto-
mated results of NSC detection at and near the implantation site at different imag-
ing time points (Fig.  42.7 ) are promising and are currently being validated using 
immunohistochemical staining  [  77,   78  ] . We have extended this method to detect 
iron-labeled NSCs from SWI which we expect will have increased detectability 
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due to the exquisite sensitivity of SWI to enhance detection of iron particles within 
NSCs  [  75  ] .   

    4.3   Anatomy-Specifi c Lesion and Stem Cell Quantifi cation 

 Stroke within certain anatomical regions (e.g., posterior limb of the internal cap-
sule) can cause signifi cant functional damage, independent of the size of the lesion. 
In addition, stem cells might have preferential paths in the brain (e.g., through white 
matter tracts) to reach sites close to the ischemic injury. Better assessment of stroke 
severity combined with enhanced monitoring of therapeutic interventions could be 
further strengthened by automated regional and anatomical segmentation. Some 
treatments may preferentially target cortical or subcortical regions. Specifi c brain 
disorders that are known to affect certain anatomical regions (e.g., Parkinson dis-
ease) could use an automated atlas or model-based method to minimize false posi-
tives. Few studies have been undertaken in this arena. 

 Previous studies have used brain anatomical templates to fi rst segment brain tis-
sue and then attempt detection of ischemic tissue within these segmented regions 
 [  23  ] . In contrast, we propose a different sequence, whereby the lesions (or implanted 
cells) are detected fi rst and are then followed by localization based on an anatomical 
atlas. We believe this would restrict anatomical registration-related errors, as we are 
not detecting the injury in this step but only quantifying the anatomy-specifi c pro-
portions of the injured tissues. 

 Numerous adult brain atlases exist but there are only few available pediatric 
atlases. A small sample of adult anatomical templates includes: (a) Laboratory of 
Neuroimaging at the University of California, Los Angeles, CA, USA (  http://
www.loni.ucla.edu/Atlases/    ), (b) Biodiversity Bank at Michigan State University, 
Hickory Corners, MI, USA (  https://www.msu.edu/~brains/brains/human/index.html    ), 
(c) BrainWeb at MacGill University, Montreal, QC, Canada (  http://mouldy.bic.mni.
mcgill.ca/brainweb/    ), and (d) Imperial College, London, UK (  http://biomedic.doc.
ic.ac.uk/brain-development/index.php?n=Main.Adult    ). Some pediatric atlases 

  Fig. 42.7    Automatic derivation of NSC and ischemic lesion volumes from MRI. In the Rice-
Vanucci model of neonatal ischemia, T2WI were used to delineate normal appearing brain 
matter, NSCs, and ischemic lesions. The  top row  shows raw T2WI data from serial neuroimaging. 
The  bottom row  superimposes the HRS extracted lesion ( red ) and NSC ( yellow ) locations onto 
the T2 maps       
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include, (a) Imperial College, London, UK (  http://biomedic.doc.ic.ac.uk/brain-
development/index.php?n=Main.Neonatal2    ), (b) Seattle Children’s Hospital, 
Seattle, WA, USA (  http://www.seattlechildrens.org/healthcare-professionals/education/
radiology/pediatricbrainatlas/    ), and (c) University of North Carolina, Chapel Hill, 
NC, USA (  https://www.med.unc.edu/bric/ideagroup/free-softwares/unc-infant-0-1-
2-atlases    ). 

 It is known that one anatomical region may contain multiple tissues (e.g., GM 
and WM), and injury susceptibility may vary within a single anatomical region also. 
Thus, anatomical brain parsing results can be further complimented by tissue detec-
tions (GM, WM, CSF). We have used our modifi ed watershed method (Sect.  3.4 ) to 
extract tissue based segmentation of human brain (Fig.  42.8a ). Our automated 

  Fig. 42.8    Automated tissue segmentation and anatomical brain parsing. ( a ) Tissue segmentation: 
The watershed tissue segmentation method of a normal brain MRI into different tissues: white 
matter ( red ), gray matter ( green ), cerebrospinal fl uid ( blue ). Skull-stripping was performed as 
well. ( b ) Anatomical brain parsing: Anatomical region mapping in an 8-year-old normal pediatric 
brain using a 2-year-old pediatric brain template from Imperial College, London, UK available 
online (  http://biomedic.doc.ic.ac.uk/brain-development/index.php?n=Main.Neonatal2    )       
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registration of a normal 8-year old pediatric brain to a pediatric brain atlas containing 
83 brain regions (Imperial College atlas, comprised of 33 two-year old normal chil-
dren  [  79  ] ) is illustrated in Fig.  42.8b . Utilizing the Pipeline environment developed 
by the Laboratory of Neuroimaging at UCLA (  http://pipeline.loni.ucla.edu/    ;  [  80  ] ) 
we have found that even without age-matching, anatomical brain regions could be 
mapped accurately. Beside the already available brain atlases, case-specifi c atlases 
can be developed for particular studies to improve computational performance. 
Such atlases can be generated from age-matched control brains by: (a) coregistering 
to a standard 3D space, (b) averaging out the individual subtleties, and (c) manually 
demarking specifi c brain regions. Such atlases can be developed separately for a 
particular MR modality (e.g., T2WI, ADC, Diffusion Tensor Imaging, etc.) or 
images from different modalities can be registered (multimodal registration) to the 
atlas space (e.g., generally T1/T2 MRI) to acquire anatomical information. Finally, 
the injured brain can be registered (intra- or intermodality registration) to fi nd 
region-specifi c statistical details of the injury. Severe internal or external brain 
distortions in the diseased brain may create problems with atlas registration, but 
this can be reduced if only the normal brain areas of the injured brain (after remov-
ing the lesion areas) are utilized to compute the image registration matrix  [  7  ] . This 
registration matrix can be used for the entire brain, including injured tissues, for 
registering it to an atlas followed by extraction of anatomy-specifi c measures of the 
injury (or labeled stem cells if implanted).  

 By using data from core/penumbra regions, GM/WM/CSF tissue regions, and 
atlas-based brain anatomical localization, one could further extract and quantify 
region-specifi c information for the above described data sets, including mean MR 
values (e.g., T2, ADC, etc.), standard deviations, textures, shapes, kurtosis, skew-
ness, etc. Such detailed complimentary information would be extremely useful in 
understanding the spatiotemporal evolution of stroke, reparative activities of 
implanted stem cells and their interactions, and additional therapeutics. These types 
of assessments cannot be reasonably conducted manually due to the large volume of 
data and the subjectivity associated with current manual methods.  

    4.4   Monitoring Spatiotemporal Interactions Between 
Stroke Tissues and Stem Cells 

 A fi nal frontier in stroke lesion analysis is automated computation of the process of 
injury recovery with or without treatment. Beyond simplistic assessment of stem 
cell volumes, automated algorithms should be able assess stem cell related thera-
peutic activities such as migration, replication, localization as well as the interaction 
between the lesion tissues and NSC activities for better understanding of this 
complex dynamic process. One should be able to determine whether an anatomical 
region is recovering faster than another, whether the lesion is shifting in the ana-
tomical space, how the MR statistics (e.g., mean, standard deviation) of the lesion 
changes across anatomy and over time, etc. Despite research using automated 

http://pipeline.loni.ucla.edu/
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methods to identify brain lesions, very limited research has considered the impor-
tance of the spatiotemporal evolution of the lesion  [  35  ] . Kabir and colleagues have 
qualitatively shown that adult stroke shifts from one anatomical region to other 
regions without further quantitative evaluation. Estimating or predicting these 
dynamic changes will expedite advanced monitoring of injury progression and of 
optimizing treatment strategies. 

 As ischemic/stroke tissues provide chemoattractive/chemorepulsive cellular and 
molecular cues  [  2,   73  ]  combined with differentiation  [  70  ]  signals to stem cells for 
injury repair, there is likely a strong interrelationship between these two processes 
that mutually drive one another. “Toxicity” at the lesional or perilesional regions 
from dying cells in a compromised vascular microenvironment might be expected 
to negatively affect NSC viability  [  2  ]  and we believe that this, as well as the charac-
teristics of homing signals from the lesion, will infl uence stem cell viability, the 
extent of cellular migration, replication (i.e., proliferation), and differentiation along 
with tissue recovery. 

 Such spatiotemporal interactions are visually and qualitatively reported  [  81  ]  and 
the necessity of objective quantifi cation is highlighted in a recent stem cell research 
review  [  82  ] . Our recent work shows that HRS-derived subregions in experimental 
ischemic lesions (Fig.  42.9a ) reveal considerable cellular dynamics in space and 
time. The HRS method  [  32  ]  automatically detects ischemic lesions and implanted 
iron-labeled stem cells (at the implantation site and close to the lesion) over the time 
course of several weeks (Fig.  42.7 ). Examining the interaction between injured tis-
sues and stem cell interactions would suggest that stem cell replication is enhanced 
when lesion volume is reduced (Fig.  42.9b ) in the subacute phase (4–5 days after 
stroke). As the ischemic lesion volume starts to increase toward its fi nal size, stem 

  Fig. 42.9    Lesion evolution and interaction. ( a ) Spatiotemporal changes in lesion composition: T2 
images from the same RVM rat pup imaged at days 1, 4, and 14 after HII. Each panel shows how 
the MR values change within the lesion, including the area and shape of the lesion and its subre-
gions over time. Mean T2 relaxation times of the subregions are signifi cantly different:  red  
(199 ± 2 ms),  green  (208 ± 3 ms),  blue  (217 ± 3 ms), and  yellow  (231 ± 6 ms). These changes likely 
refl ect different degrees of necrosis/apoptosis and may also refl ect differential tissue salvageability. 
( b ) Interrelations between temporal evolution of HII lesion and NSC areas. 2D areas of HII lesion 
and NSC at the same brain level vary over time. The trends are inversely correlated, implying that 
initially decreasing lesion area gives more viable tissues for NSCs to replicate and as lesion 
volume increases later, either NSCs die or differentiate into other cells       
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cells start to die, presumably due to a more toxic environment. Discovering such 
patterns using regression analysis or data mining strategies using computational 
pattern recognition  [  29  ]  likely will be a key direction for future translational stroke 
research.    

    5   Conclusions 

 Our own studies and those of others suggest that signifi cant advances in computa-
tional analytical methods of MRI, CT, and PET data will result in clinically useful 
applications that have the potential to greatly improve the treatment of children and 
adults who suffer from focal and global ischemic injuries. The computational 
approaches we have described provide a glimpse of some of the future directions of 
automated assessments from imaging data. These approaches with some adaptation 
can be used for other acute, chronic, and acquired brain injuries.      
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