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Chapter 15

A Comparison of
Classification- and
Indexing-Based Approaches
for Fingerprint Identification

Xuejun Tan, Bir Bhanu, and Rong Wang

15.1 INTRODUCTION

There are two kinds of biometric systems that use fingerprints for the personal
identity: verification and identification. In a verification system, the input includes a
query fingerprint and a known identity (ID), and the system verifies whether the ID is
consistent with the input fingerprint. The output of a verification system is an answer
of yes or no. In an identification system, the input only includes a query fingerprint,
and the system tries to answer the following question: Are there any fingerprints in
the database which resemble the query fingerprint? In this chapter, we are dealing
with the identification problem. There are three kinds of approaches to solve the
fingerprint identification problem:

1. The first approach is to repeat the verification procedure for each fingerprint
in the database and select the best match. However, if the size of the database
is large, this approach will be time-consuming and it is not practical for real-
world applications [1].

2. The second approach involves fingerprint classification followed by verifica-
tion. Traditional classification techniques attempt to classify fingerprints into
five classes: right loop (R), left loop (L), whorl (W), arch (A), and tented
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368 Chapter 15 A Comparison of Classification- and Indexing-Based Approaches

arch (T). The most widely used approaches for fingerprint classification are
based on the number and relations of singular points (SPs) [2]. The problem
with this kind of approach is that it is not easy to detect SPs and some fin-
gerprints do not have SPs. Moreover, the uncertainty in the location of SPs is
large, which has an undesired effect on the classification results. Based on fin-
gerprint’s orientation field [3], other classification approaches use multispace
Karhunen–Loeve transform [4] and a combination of different classifiers [5]
to improve the performance. The most important problem associated with the
classification technique for identification is that the number of principal classes
is small and the fingerprints are unevenly distributed (31.7%, 33.8%, 27.9%,
3.7%, and 2.9% for classes R, L, W, A, and T, respectively [6]). The classifi-
cation approach does not narrow down the search enough in the database for
efficient identification.

3. The third approach consists of fingerprint indexing followed by verification.
Germain et al. [7] integrate indexing and verification in their approach, in
which top hypothesis generated by indexing is considered as the final identifi-
cation result. They use the triplets of minutiae in their identification procedure.
The features they use are: the length of each side, the angles that the ridges
make with respect to the x-axis of the reference frame, and the ridge count
between each pair of vertices. Bhanu and Tan [8] present an indexing approach
using novel features of minutiae triplets. They compare the performance of
their approach with Germain et al. [7] and demonstrate the improvement in
result over Germain et al. [7].

In this chapter, we compare the second and third approaches (see Figure 15.1)
that use minutiae features for fingerprint identification. The contributions of this
chapter are as follows: (a) It provides the comparison of classification- and indexing-
based approaches in a single chapter; some of the material is scattered in various
recent papers. All the experimental results for comparison are carried out on the
entire NIST-4 fingerprint database [6]. (b) It presents a technique based on learned
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Figure 15.1. Block diagram of two different approaches to solve identification problem:
(a) Classification followed by verification; (b) Indexing followed by verification.
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masks for minutiae feature extraction and integrates newly developed classification
[9] and indexing [8] techniques with the same verification algorithm that optimizes a
criterion function. (c) It presents extensive comparisons between classification- and
indexing-based techniques for identification.

15.2 TECHNICAL APPROACH

15.2.1 Minutiae Extraction Using Learned Feature
Extraction Masks

There are many approaches in the literature for the minutiae extraction [10]. As
compared to the other approaches, we extract minutiae using learned masks for all
the results reported in this chapter. For each fingerprint, first the background is re-
moved. Local orientation is computed in each local 16 × 16 block. The fingerprint is
adaptively smoothed, binarized, and thinned using the local orientation information.
Potential minutiae are found using crossing number [2]. Finally, learned feature ex-
tractor masks obtained during offline processing are adaptively applied to purify the
potential minutiae.

15.2.1.1 Offline Learning of Feature Extraction Masks

A mask is a 2D filter that is concerned with detecting a minutia. Since a minutia
can be an endpoint or a bifurcation, two masks are to be learned, one for each kind
of feature. For simplicity, we use endpoints as the example to explain our learning
approach. The mask for bifurcations is learned by following a similar process.

Figure 15.2 shows an ideal endpoint mask T that consists of two submasks, Tr

(length Lr ) and Tg (length Lg ), which denote the mask for ridge and gap, respectively.
For simplicity, we assume Lr = Lg. H and L are the height and the length of the mask
T, and L = Lr + Lg. The values of each pixel in Tr and Tg are 1 and 0, respectively.
Suppose (a) a ridge end E in a binary fingerprint is as ideal as the ideal mask T,
(b) the local orientation at the ridge end is θl , (c) the correlations between the mask
T and the ideal ridge end E with the orientation θl and θl + π are fθl

and fθl+π,
respectively, and (d) the difference between fθl

and fθl+π is �θl
, that is,

�θl
= fθl

− fθl+π (15.1)

Figure 15.2. Illustration of an ideal endpoint mask T.
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where fθl
= ∑

(h,l)∈(T∩Eθl
){T (h, l) × Eθl

(h, l) } and Eθl
(h, l) is the ridge with orien-

tation θl and the mask T (h, l) is applied along the ridge.

Training Data. Suppose (a) examples of endpoints and bifurcations are obtained
from M fingerprint images FIk , where k = 1,2, . . . , M; (b) in the kth fingerprint image
FIk , there are Nk feature locations (xk,i , yk,i ), where i = 1,2,3 , . . . , Nk ; (c) in the local
area around (xk,i , yk,i ), Ik,i (m, n) is the gray-scale value at pixel (m, n) of the image FIk ,
where xk,i − d1 ≤ m ≤ xk,i + d1, yk,i − d2 ≤ n ≤ yk,i + d2, d1 and d2 are constants;
and (d) G = {(xk,i , yk,i )}. Then, for each pixel in G, we carry out the following steps:
(1) Estimate the local orientation θk,i at pixel (xk,i , yk,i ) in the local area; (2) adaptively
smooth Ik,i (m, n) in the local area; (3) adaptively binarize Ik,i (m, n) in the local area.
The details of these steps are the same as those in the run-time minutiae extraction,
which are discussed in Section 15.2.1.2.

Optimzation for Feature Extracton Masks Learning. Suppose
(a) the mask is T(h, l), where 1 ≤ h ≤ H, 1 ≤ l ≤ L, and H = 2d1 + 1 and L = 2d2 + 1;
(b) Bk,i (h, l) is the binary image of Ik,i (m, n); and (c) Bθk,i

k,i (h, l) is the rotated binary
image of Bk,i (h, l), rotation angle is θk,i , which is the local orientation at pixel (xk,i , yk,i ).
According to Eq. (15.1), the objective of learning algorithm can be defined as [11]

arg max
T

{
M∑

k=1

Nk∑
i=1

H∑
h=1

L∑
l=1

[
T (h, l) × Qk,i(h, l)

]}
, (15.2)

where Qk,i(h, l) = B
θk,i

k,i (h, l) − B
θk,i

k,i (h, L − l). If we normalize the mask’s energy

to one—that is,
∑H

h=1
∑L

l=1 T 2(h, l) = 1—we can solve the optimization problem
with Lagrange’s method. Let

q(h, l) =
M∑

k=1

Nk∑
i=1

Qk,i(h, l). (15.3)

Then, the optimal solution for the mask is

T (h, l) = q(h, l)√
H∑

h=1

L∑
l=1

q2(h, l)

. (15.4)

15.2.1.2 Run-Time Feature Extraction

The steps are summarized below:

Remove Background. Since a fingerprint image usually includes some back-
ground that does not have any useful information, it is desired to eliminate it. We split
an fingerprint into 16 × 16 blocks and compute the mean μs of the gray-scale value
of the pixels in each block. If the mean μs is greater than δs (δs = 150), then the block
belongs to background.
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Compute Local Orientation. The input fingerprint is first smoothed using
a 5 × 5 Gaussian filter of μ = 0 and σ = 1. Sobel operators are then applied to the
smoothed image to estimate the gradient magnitude. After that, the fingerprint is split
into m × m blocks (m = 16) with 4 pixels overlap. For each block, the local orientation
θ is obtained using a mean square error (MSE) criterion [12].

Adaptively Smooth Image. The fingerprint obtained after background re-
moval is adaptively smoothed using guidance from the local orientation. The purpose
of this processing is to eliminate most fine details such as islands and pores. We per-
form uniform smoothing along the local ridge orientation and Gaussian smoothing
normal to it. The kernel of the smoothing filter is the normalized product of a 5 × 1
uniform kernel and a 1 × 3 Gaussian kernel of μ = 0 and σ = 1. Possible orientations
of the smoothing filters are discretized into 16 values. An appropriate filter is selected
according to the local orientation and applied to each pixel.

Adaptively Binarize and Thin Image. The smoothed fingerprint is split
into 16 × 16 blocks with 8 pixels overlap. For each block, we perform histogram
equalization and binarize the block by a threshold. Thinned ridges are obtained by
thinning the binary image.

Find Potential Minutiae. The initial potential minutiae are selected by cross-
ing number (CN) at each pixel in the thinned image. Generally, initial potential minu-
tiae are very noisy because of binarization, thinning, and error in estimating local
orientation. Two simple criteria we use to filter the initial potential minutiae are as
follows: (a) In a small local area, if an endpoint and a bifurcation are chosen as the
initial potential minutiae, then ignore both of them; (b) in a small local area, if more
than one endpoint or one bifurcation are chosen as the initial potential minutiae, then
ignore all these minutiae. The result is a relatively good set of potential minutiae.

Adaptively Apply Feature Extraction Mask. At this step, the learned
masks are adaptively applied to the potential minutia locations obtained above. Sup-
pose the local orientation at a potential minutia location is θ, then we rotate the
learned mask by θ and compute the difference in correlation using Eq. (15.1). In
order to compensate for the error in estimating the local orientation, the correlations
of the fingerprint are computed with five masks, which are the learned masks rotated
with θ, θ ± 5o and θ ± 10◦. The largest of these values is taken as the correlation
at this location. (a) Let the number of potential minutiae in an image be Na ; (b) let
the correlation of potential minutiae be V = {vi}, where i = 1, 2, 3, . . . , Na ; (c) let
the mean and the standard deviation of V be μv and σv , respectively; (d) let kr be a
constant (taken as 1 for all the experiments in this chapter) for adjusting the threshold
of rejecting false minutiae. If vi > (μv + kr × σv ), we choose the ith potential minutia
as a true minutia, otherwise it is a false minutia.
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Figure 15.3. Block diagram of the classification approach.

15.2.2 Classification

Figure 15.3 shows the diagram of our classification approach using genetic program-
ming (GP) [9, 3, 14]. During training, GP is used to generate composite operators,
which can be viewed as a selected combination of primitive operations applied to the
primitive features generated from the original orientation field. Features are computed
wherever feature generation operators (see below) are used. These features are used
to form a feature vector that represents a particular fingerprint image, and it is used for
subsequent fingerprint classification. A Bayesian classifier is used for classification.
Fitness value is computed based on the classification result and is used for evolving
GP. During testing, composite operators are applied to generate feature vectors.

The individuals in our GP-based learning approach are composite operators rep-
resented by binary trees whose internal nodes represent the prespecified primitive
operators and leaf nodes represent the primitive feature images. The major design
considerations are explained in the following:

The Set of Terminals. For a fingerprint, we can estimate the orientation field
[8]. The block size is m = 32 in our classification experiments, and θ ∈ [0, 180] and is
measured in clockwise direction. The set of terminals used in this chapter are called
primitive features, which are generated from the orientation field. Primitive features
used in our experiments are: (1) original orientation image; (2) mean, standard devi-
ation, min, max, and median images obtained by applying 3 × 3 and 5 × 5 filters on
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orientation image; (3) edge images obtained by applying sobel filters along horizontal
and vertical directions on orientation image; (4) binary image obtained by threshold-
ing the orientation image with a threshold of 90; and (5) images obtained by applying
sine and cosine operations on the orientation image. These 16 images are input to the
composite operators. GP determines which operations are applied on them and how
to combine the results.

The Set of Primitive Operators. A primitive operator takes one or two in-
put images, performs a primitive operation on them, and outputs a resultant image.
Suppose (1) A and B are images of the same size and c is a constant; and (2) for
operators, which take two images as input, the operations are performed on the pixel-
by-pixel basis. Currently, there are two kinds of primitive operators in our approach:
computation operators and feature generation operators, which are described in
references 9 and 13. For computation operators, the output is an image, that is
generated by applying the corresponding operations on the input image. However, for
feature generation operators, the output includes an image and a real number or vector.
The output image is the same as the input image and is passed as the input image to
the next node in the composite operator. The size of the feature vectors depends on
the number and kind of the feature generation operators.

Generation of New Composite Operator. The initial population of the
composite operators, represented as binary trees, is randomly generated. The search
by GP is done by performing reproduction, crossover, and mutation operations. The
reproduction operation used in our approach is the tournament selection. To perform
crossover, two composite operators are selected based on their fitness values. One
internal node in each of these two parents is randomly selected, and the two subtrees
with these two nodes as root are exchanged between the parents. Once a composite
operator is selected to perform mutation operation, an internal node of the binary
tree representing this operator is randomly selected, and the subtree rooted at this
node is replaced by another randomly generated binary tree. The resulting new bi-
nary tree replaces the old one in the population. We use steady-state GP [9] in our
experiments.

The Fitness Measure. During training, at every generation for each composite
operator proposed by GP, we estimate the probability distribution function (PDF) of
the feature vectors for each class using all the available features. Suppose the feature
vectors for each class have a normal distribution, vi,j , where i = 1, 2, 3, 4, 5 and j = 1,
2, . . . , ni ; ni is the number of feature vectors in the training for class i, ωi. Then, for
each i, we estimate the mean μi and covariance matrix

∑
i by all vi,j , and the PDF

of ωi is obtained. A Bayesian classifier is used for classification. The percentage of
correct classification (PCC) is taken as the fitness value of the composite operator:
Fitness value = nc

ns
×100%, where nc is the number of correctly classified fingerprints

in the training set and ns is the size of the training set.
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Parameters and Termination. The key parameters are the population size,
the number of generations, the crossover rate, and the mutation rate. The GP stops
whenever it finishes the prespecified number of generations.

15.2.3 Indexing

Our approach for fingerprint indexing is based on the use of triplets of minutiae and
ridge counts. However, for identification, the indexing and verification in our approach
are separated. First, we apply indexing techniques to find the top N hypotheses, and
then we apply a verification technique to select a hypothesis with the best match. The
hypotheses are generated according to the number of corresponding triangles between
two fingerprints. Top N hypotheses, sorted in a descending order of the number of
potential corresponding triangles, are the indexing results.

For indexing, we use features based on minutiae triplets [8] in conjunction with
the constraints on the transformation to eliminate the false corresponding triangles.
Figure 15.4 shows the block diagram of our indexing approach. During the offline pro-
cessing, the features of each template fingerprint are computed and used to construct
the indexing space function H(αmin, αmed, φ, η, λ, χ, ξ) [8].

� Angles α min and α med. α i’s are the three angles in a triplet, where i = 1, 2, 3.
αmin = min{αi}, αmax = max{αi}, αmed = 180◦ − αmin − αmax.

� Triangle handedness φ. Let Zi = xi + jyi be the complex number correspond-
ing to the location (xi, yi) of point Pi, i = 1, 2, 3. Define Z21 = Z2 − Z1, Z32 =
Z3 − Z2, and Z13 = Z1 − Z3. Let triangle handedness φ = sign(Z21×Z32).
Points P1, P2, and P3 are noncolinear points, so φ = 1 or −1.

Template Fingerprints Query Fingerprint 

Feature Extraction Feature Extraction 

For each triplets of minutiae,
compute αmin, αmed, φ, η, λ, χ, ξ 

For each triplets of minutiae,
compute αmin, αmed, φ, η, λ, χ, ξ 

Model database based on the 
triplets of minutiae 

Generate top N hypotheses according 
to the number of potential 
corresponding triangles 

Indexing Results 

Online processing Offline processing 

Hypotheses 
generation 

Figure 15.4. Block diagram of the indexing approach.



UN
CO

RR
EC

TE
D
PR

OO
FS

15.2 Technical Approach 375

� Triangle direction η. We search the minutiae in the image from top to bottom
and left to right. If a minutiae is the start point of the ridge, then ν = 1; otherwise
ν = 0. Let η = 4ν1 + 2ν2 + ν3, where νi is ν value of point Pi, i = 1, 2, 3 and
0 ≤ η ≤ 7.

� Maximum side λ. Let λ = max{Li}, where L1 = |Z21|, L2 = |Z32|, and L3 =
|Z13|.

� Minutiae density χ. In a local area (32 × 32 pixels) centered at the minutiae
Pi. If there exists χi minutiae, then the minutiae density for Pi is χi. Minutiae
density χ is a 3D vector consisting of all χi.

� Ridge counts ξ. Let ξ1, ξ2, and ξ3 be the ridge counts of sides P1P2, P2P3, and
P3P1, respectively. Then, ξ is a 3D vector consisting of all ξi.

During the online processing, we compute the features for the query fingerprint
and use them to search the indexing space H(αmin, αmed, φ, η, λ, χ, ξ). If the fea-
ture values of two triangles, which are from two different fingerprints, are within
some error tolerance, then they are potential corresponding triangles. The criteria
are: |α′

min − α′′
min| ≤ Tαmin , |α′

med − α′′
med| ≤ Tαmed , φ′ = φ′′, η′ = η′′, |λ′ − λ′′| ≤ Tλ,

|χ′
i − χ′′

i | ≤ Tχ, |ξ′
i − ξ′′

i | ≤ Tξ, i = 1, 2, 3, where (α′
min, α

′
med, φ

′, η′, λ′, χ′
i, ξ

′
i) and

(α′′
min, α

′′
med, φ

′′, η′′, λ′′, χ′′
i , ξ

′′
i ) are the local properties of the triangle in different

fingerprints; Tαmin , Tαmed , Tλ, Tχ, and Tζ are thresholds to deal with the local
distortions.

15.2.4 Verification

Verification follows classification and indexing. It consists of the following two steps:
(a) Use local information to estimate transformation between potential corresponding
triangles and (b) use global information to eliminate false corresponding triangles and
compute matching score. For indexing, verification is simple, since after indexing, for
each hypothesis, we know the potential corresponding triangles and we may use this
information in the verification directly. However, for classification, we only know the
class information. So, we have to find the potential corresponding triangles between
the query fingerprint and each template fingerprint that belongs to the same class.

Step 1. Estimate Transformation Between Potential Correspond-
ing Triangles. Suppose the sets of minutiae in the template and the query finger-
prints are {(tn,1, tn,2)} and {(qm,1, qm,2}) respectively, where n = 1, 2, 3, . . . , N, m = 1,
2, 3, . . . , M. The number of minutiae in the template and the query fingerprints are
N and M, respectively. Let �t and �q be two potential corresponding triangles in
the template and the query fingerprints, respectively. The coordinates of the vertices
of �t and �q are (xi,1, xi,2) and (yi,1 , yi,2 ), respectively, and i = 1, 2, 3. Suppose

Xi = [ xi,1 xi,2 ]T , Yi = [ yi,1 yi,2 ]T and that the transformation Yi = F(Xi) can be
expressed as

Yi = s · R · Xi + T, (15.5)
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where s is the scaling factor, R is the rotation matrix with θ as the angle of rotation
in counter clockwise direction between two fingerprints, and T = [ t1 t2 ]T is the
vector of translation.

There are two possible approaches: Least squares minimization (LSM) over all
hypothesized triangles correspondences or over each of the triangle pair. We prefer
the second alternative since it may allow better distortion tolerance on different parts
of the fingerprint. We estimate the transformation parameters by minimizing error ε2,
which is the sum of the squared distances between the transformed template points
and their corresponding query points. That is,

error = arg min
(Ŝ,R̂,T̂ )

{ε2} (15.6)

where ε2 = ∑3
i=1 ||Yi − (ŝ · R̂ · Xi + T̂ )||2 and ||V|| is the L2 norm of vector V. The

solution of Eq. (15.6) is

θ̂ = arctan

(
B

A

)
, ŝ =

3∑
i=1

{(Xi − X)′R̂′(Yi − Y )}
3∑

i=1
{(Xi − X)′(Yi − Y )}

, T̂ = Y − ŝ·R̂·X,

where

A =
3∑

i=1

{(x1 − xi,1)(yi,1 − y1) + (x2 − xi,2)(yi,2 − y2)},

B =
3∑

i=1

{(x1 − xi,1)(yi,2 − y2) − (x2 − xi,2)(yi,1 − y1), }

X =
[

x1

x2

]
=

3∑
i=1

Xi, Y =
[

y1

y2

]
=

3∑
i=1

Yi, R̂ =
[

cosθ̂ −sinθ̂

sinθ̂ cosθ̂

]
, T̂ =

[
t̂1

t̂2

]
.

If ŝ, θ̂, t̂1, and t̂2 are within limits, then we take them as the parameters of the
transformation between two potential corresponding triangles �t and �q . Otherwise,
they are false correspondences.

Step 2. Eliminate False Corresponding Triangles and Compute
Match Score. Based on the above transformation F̂ (ŝ, θ̂, t̂1, t̂2), ∀j , j = 1, 2, 3,

. . ., N, we compute:

d = arg min
k

{∣∣∣∣F̂
([

tj,1

tj,2

])
−

[
qk,1

qk,2

]∣∣∣∣
}

.

If d is less than a threshold Td , then we define the points [tj ,1, tj,2]′ and [ qk,1, qk,2]′ are
corresponding points. If the number of corresponding points based on F̂ (ŝ, θ̂, t̂1, t̂2) is
greater than a threshold Tn , then we define �t and �q as the corresponding triangles
between the template and the query fingerprints. The final identification score is the
number of corresponding triangles between the query and template fingerprints.



UN
CO

RR
EC

TE
D
PR

OO
FS

15.3 Experimental Results 377

Figure 15.5. Examples of training data: Endpoint (first row) and bifurcation (second row).

15.3 EXPERIMENTAL RESULTS

NIST Special Database 4 (NIST-4) [6] with 2000 pairs of fingerprints is used in
our experiments, where each pair is a different impression of the same finger. The
size of the fingerprint images is 480 × 512 pixels with a resolution of 500 DPI. The
fingerprint is coded as an f or s followed by six numbers, which means the fingerprint
image is the first or second impression of certain finger.

15.3.1 Learning Feature Extraction Mask

Training data are manually obtained from 30 fingerprints based on the quality and
the location of the minutiae. There are 85 endpoints and 86 bifurcations that are
obtained from these 30 images. Figure 15.5 shows five examples of the training data
for endpoints and bifurcations (note that each image contains at least one minutia).
The masks for endpoint and bifurcation are learned from these binarized examples.
Figure 15.6 shows the learned masks that are used to extract minutiae. Note that in
order to show the structure of the masks clearly, the masks are normalized such that
the minimum and maximum values map to 0 and 1, respectively. Figure 15.7 shows
the learned masks superimposed on the examples in Figure 15.5.

Evaluation by Goodness Value. Suppose Me = {ei , i = 1, 2, 3, . . . , n} is the
set of n minutiae extracted by a feature extraction algorithm and Mg = {gj , j = 1, 2,
3, . . . , m} is the set of m minutiae extracted by an expert in a fingerprint. We define
the following terms: (1) Matched minutiae: If minutia ei is located in an uncertainty

Figure 15.6. Learned feature extraction masks: Endpoint (left) and bifurcation (right).
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Figure 15.7. Learned feature extraction masks superimposed on examples in Figure 15.5.

region centered around minutia gj , ei and gj are matched minutiae. (2) Occluded
minutia: If minutia gj is not in an uncertainty region of any minutia ei , then gj is
an occluded minutia. (3) Clutter minutia: If ei is not in an uncertainty region of any
minutia gj , then ei is a clutter minutia.

In our experiments, the size of the uncertainty region is 8 × 8. goodness value
(GV) of extracted feature is defined as:

GV = nm

nm + no + nc

,

where nm , no , and nc are the number of matched, occluded, and clutter minutiae,
respectively. We choose 400 pairs of images from the first 1000 pairs of images in
NIST-4. These images are chosen visually based on the size of overlapped areas
between two images, the number of scars, translation, rotation and scale between
images. Figure 15.8 shows goodness value of 15 test fingerprints images (from NIST-
4 database). From this figure, we find that the learned masks work better than the fixed
masks described in Bhanu et al. [15]. For example, mean of GV on these 15 images is
0.66 for learned masks, and 0.57 for fixed masks, which amounts to an improvement
of 15.7%.

Evaluation by Indexing Performance. A query fingerprint, which has a
corresponding fingerprint in the database, is said to be correctly indexed if it has
enough corresponding triangles in the model database and the correct corresponding
fingerprint appears in a short list of hypotheses obtained by the indexing approach.
We define correct index power (CIP) as

CIP = Nci

Nd

× 100%,

where Nci is the number of correctly indexed fingerprints and Nd is the number of
images in the database. Figure 15.9 shows the comparison of CIP for fixed and learned
masks. We observe that the performance of the learned masks is better than that of
the fixed masks. CIP for the top 1 hypothesis increases by 2.8%, and by 6.5% and
5.2% when we consider the top 5 and top 10 hypotheses, respectively. Using the fixed
masks, the CIP reaches 100% only when we consider the top 26 hypotheses. For
learned masks, however, we only need to consider top 10 hypotheses.
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Figure 15.8. Goodness value of test
fingerprints.

15.3.2 Classification Results

We use the first 1000 pairs of fingerprints for training. In order to reduce the effect of
overfitting, we use only the first 500 pairs to estimate the parameters for each class and
use the entire training set to validate the training results. Since we want to compare
the results of classification and indexing, we only test the second impression of the
second 1000 pairs of fingerprints. The first impressions of the second 1000 pairs of
fingerprints are used as templates in verification. The parameters in our experiments
are: maximum size of composite operator 150, population size 100, mutation rate
0.05, crossover rate 0.6, and number of generation 100.

We performed the experiments 10 times and took the best result as the learned
composite operator. Table 15.1 shows the confusion matrix of our testing results of the
second 1000 pairs of fingerprint in NIST-4. The images where tented arch is confused
with arch are s1037 06, s1299 07, s1486 03, s1711 02, s1745 09, and s1759 09. The
images where arch is confused with tented arch are s1568 08, s1948 05, s1956 10,
and s1998 07. Figure 15.10 shows these 10 images where tented arch and arch are
confused. Note that because of bad quality, the ground truths of some fingerprints

Figure 15.9. Comparison of experimental
results.
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Table 15.1. Confusion Matrix for Five-Class Classifications

Assigned Class

True Class R L W A T

R 180 5 1 1 14
L 1 188 3 3 2
W 6 6 187 0 1
A 2 1 0 208 4
T 5 10 2 6 172

provided by NIST-4 contain two classes, for example, the ground-truth labels of
f0008 10 include class T and L. As other researchers did in their experiments, we only
use the first ground-truth label to estimate the parameters of the classifier. However,
in testing, we use all the ground truth labels and consider a test as correctly classified
if the output of the system matches to one of the ground truths. However, if the output
of the system does not match any one of them, then we consider it as two incorrect
classifications and each of them has an entry in the confusion matrix. Note that some
published research work, such as reference 4, only has one entry in the confusion
matrix when the input fingerprint has two ground truths and the classification result
is incorrect, which inevitably reduces the error rate. Based on the confusion matrix in
Table 15.1, the PCC is 92.8% for five-class classification. Considering that we have
not rejected any fingerprints from NIST-4, our classification results are excellent [13].

Figure 15.10. NIST-4 database images where tented arch and arch are confused. For the first six
images (from left to right and top to bottom), the ground-truth label is tented arch and they are
classified as arch. For the last four images, the ground truth is arch and they are classified as tented
arch.
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15.3.3 Indexing Results

In order to compare the results between indexing and classification, we only do in-
dexing experiments on the second impressions of the second 1000 pairs of finger-
prints. The parameters used in our experiments are: Tαmin = 2◦, Tαmed = 2◦, Tλ = 20,
Tχ = 2, Tζ = 2. Figure 15.11 shows the correct indexing power (CIP). We observe
that CIP increases as p, the percentage of the database searched, increases. The
CIP are 83.3%, 88.1%, 91.1%, and 92.6%, and p are 5%, 10%, 15%, and 20%,
respectively. As p reached about 60%, the relation between CIP and p becomes
linear.

15.3.4 Identification Results

For classification, since the number of classes in fingerprint is small, we have to
check more hypotheses in verification. For example, the classification result of our
approach is one of the best results reported in published papers, however, we can
only classify fingerprints into five classes. Since each class is uniformly distributed in
NIST-4, after classification, about 200 hypotheses need to be considered in verifica-
tion. And, this number cannot be tuned. As for indexing, since CIP varies according
to the size of the search space, we have different performances of identification by
indexing approach, depending on the percentage of the database that is searched.
Conceptually, each fingerprint as a query is verified against all the stored finger-
print templates. That is 1,000,000 verifications. Among them, 999,000 verifications
are estimating false acceptance rate (FAR) and 1000 verifications are for estimating
genuine acceptance rate (GAR). The receiver operating characteristic (ROC) curve is
defined as the plot of GAR against FAR. Based on different CIP, we can have different
ROCs for identification results for the indexing-based approach and only one ROC
for the classification-based approach. The parameters used in the verification step are:
threshold to constrain scaling factor ŝ, 0.85 < ŝ < 1.15; threshold to constrain rotation
angle θ̂, −30◦ < θ̂ < 30◦; thresholds to constrain translations t̂1 and t̂2,

∣∣t̂1∣∣ < 150 and

Figure 15.11. Indexing performance.
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Figure 15.12. Identification results using classification based approach.

∣∣t̂2∣∣ < 100; threshold to find the corresponding points, Td = 12; threshold to find the
corresponding triangles, Tn = 8.

Figures 15.12 and 15.13 show identification results based on classification
and indexing, respectively. Note that GAR cannot reach 100.0%. One important
reason is that bad-quality images do not provide enough similarity information to
be used in verification, and the NIST-4 database is a very difficult database. Using the
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Figure 15.13. Identification results using indexing based approach.
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classification-based approach, GAR is 77.2% when FAR is 4.1 × 10−2%, while using
the indexing-based approach with p = 5%, GAR is 77.2% and FAR is 8.0 × 10−3%. It
shows that in order to achieve similar GAR in identification, we only need to search
5% of the database by indexing-based approach for identification, while classification-
based approach for identification may need to search 20% of the entire search space.
FAR for indexing-based approach is much less than that for the classification-based
approach. The classes R, L, W, A, and T are uniformly distributed in NIST-4. How-
ever, in nature, the frequencies of their occurrence are 31.7%, 33.8%, 27.9%, 3.7%,
and 2.9%, respectively. So, using the classification-based approach the search space
that needs to be searched will be more than 30.0%, since there are fewer fingerprints
that belong to A and T classes in nature than to other classes.

15.4 CONCLUSIONS

In this chapter, we compared the performance of two approaches for identification.
One is the traditional approach that first classifies a fingerprint into one of the five
classes (R, L, W, A, T) and then performs verification. The alternative approach is
based on indexing followed by verification. Using state of the art highly competitive
approaches for classification, indexing, and verification, we compared the perfor-
mance of the two approaches for identification using the NIST-4 fingerprint database.
We found that the indexing technique performs better considering the size of search
space (5% versus 20%) that needs to be examined. Also, for the same GAR (77.2%)
the FAR performance (8.0 × 10−3% versus 4.1 × 10−2%) of indexing-based approach
is lower. Thus, the indexing based approach provides a potential alternative to the tra-
ditional classification-based approach commonly used for fingerprint identification.
Also it is possible to use the indexing approach within each of the classes after the
classification has been done. This will expedite the identification performance of a
classification-based approach.
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