Visualization and Intelligent Systems Laboratory
VISLab

 

 

Contact Information

VISLab
Winston Chung Hall Room 216
University of California, Riverside
900 University Avenue
Riverside, CA 92521-0425


Tel: (951)-827-3954

CRIS
Bourns College of Engineering
UCR
NSF IGERT on Video Bioinformatics

UCR Collaborators:
CSE
ECE
ME
STAT
PSYC
ENTM
BIOL
BPSC
ECON
MATH
BIOENG
MGNT

Other Collaborators:
Keio University

Other Activities:
IEEE Biometrics Workshop 2014
IEEE Biometrics Workshop 2013
Worshop on DVSN 2009
Multibiometrics Book

Webmaster Contact Information:
Alex Shin
wshin@ece.ucr.edu

Last updated: July 1, 2017

 

 

Bayesian-based performance prediction for gait recognition

Presented by: Ju Han

ABSTRACT: Existing gait recognition approaches do not give their theoretical or experiential performance predictions. Therefore, the discriminating power of gait as a feature for human recognition cannot be evaluated. In this paper, we first propose a kinematic-based approach to recognize human by gait. The proposed approach estimates 3D human walking parameters by performing a least squares fit of the 3D kinematic model to the 2D silhouette extracted from a monocular image sequence. Next, a Bayesian based statistical analysis is performed to evaluate the discriminating power of extracted features. Through probabilistic simulation, we not only predict the probability of correct recognition (PCR) with regard to different within-class feature variance, but also obtain the upper bound on PCR with regard to different human silhouette resolution. In addition, the maximum number of people in a database is obtained given the allowable error rate. This is extremely important for gait recognition in large databases.