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Abstract—An efficient and robust framework is proposed for
two-view multiple structure-and-motion segmentation of unknown
number of rigid objects. The segmentation problem has three
unknowns, namely the object memberships, the corresponding
fundamental matrices, and the number of objects. To handle this
otherwise recursive problem, hypotheses for fundamental ma-
trices are generated through local sampling. Once the hypotheses
are available, a combinatorial selection problem is formulated to
optimize a model selection cost which takes into account the hy-
potheses likelihoods and the model complexity. An explicit model
for outliers is also added for robust segmentation. The model selec-
tion cost is minimized through the branch-and-bound technique
of combinatorial optimization. The proposed branch-and-bound
approach efficiently searches the solution space and guaranties
optimality over the current set of hypotheses. The efficiency and
the guarantee of optimality of the method is due to its ability to
reject solutions without explicitly evaluating them. The proposed
approach was validated with synthetic data, and segmentation
results are presented for real images.

Index Terms—Branch-and-bound, combinatorial optimization,
model selection, structure-and-motion segmentation.

I. INTRODUCTION

S EGMENTATION of structure-and-motion is a vital step to-
wards interpretation of a dynamic scene. The structure of a

typical dynamic scene includes multiple independently moving
objects, and these objects are captured by a moving camera.
Conventional approaches based on the frame difference [1], [2]
or the 2-D flow based methods [3], [4] are restricted in seg-
menting such a scene. The frame difference based approaches
are limited due to the need for camera motion compensation.
On the other hand, the 2-D flow based approaches are limited
by the camera model used which is typically affine.

To address the segmentation problem in a better way, a
comprehensive theory of structure-and-motion (SaM) estima-
tion from perspective images has been developed by computer
vision researchers over the years [5]. Analysis of dynamic
scenes based on this theory, also known as multibody struc-
ture-and-motion (MSaM), is now being extensively explored.
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The two-view MSaM problem can be interpreted as a geometric
problem [6]. However, direct application of the geometric in-
terpretation to the real world problems is limited as it lacks
an outlier model. Clustering is an interesting alternative to
solve the MSaM problem. Two-view MSaM clustering turns
out to be a chicken-and-egg problem. To segment a scene,
motion models for all the objects in the scene are needed and
to estimate the motion models of individual objects, the objects
have to be segmented first. To solve this recursive problem,
iterative technique such as expectation maximization (EM) can
be used [7]. As the results of EM are only locally optimal,
the quality of the final segmentation depends on the initial
clustering. An alternative to the iterative method is a sequential
extraction strategy where the dominant motions are segmented,
and separated one by one, until the entire scene is explained
[8]. A limitation of such methods is that the objects with
similar motions are often incorrectly segmented. The object
encountered earlier in the search is assigned some fraction of
other objects which have similar motion.

To get out of the chicken-and-egg dilemma, some researchers
have applied random sampling to generate multiple hypotheses
for the motions in a scene [9], [10]. Prior knowledge that the seg-
mentation is spatially coherent, helps in the selection of reliable
hypotheses by local sampling. The local sampling can be carried
out as random sample consensus (RANSAC) [5] applied to local
spatial neighborhood. Once hypotheses are available through
sampling, a suitable cost function can be optimized to achieve
MSaM segmentation. Another important aspect of clustering is
the number of clusters. While most of the clustering techniques
assume that the number of clusters is known, such assumption
is not valid for the segmentation of a dynamic scene. Typically,
clustering is carried out by varying the number of clusters, and
the best fitting clustering under a certain criterion is selected. In
this work, the problem of selecting optimal number of clusters
is formulated as a combinatorial optimization problem under a
sampling based framework.

The paper gives a general combinatorial framework to opti-
mize a model selection cost function. The cost function inte-
grates maximum likelihood of hypotheses, a clustering cost and
uniform distribution of outliers. Initially, hypotheses for mo-
tion are generated by local sampling of correspondences be-
tween two views. A null hypothesis is also introduced, which
suggests that a correspondence is an outlier, with uniform like-
lihood. Next, a model selection criterion that penalizes the like-
lihood of the clustering with increasing number of clusters is
added to the framework. The model selection criterion is opti-
mized through a branch-and-bound process to obtain the final
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MSaM segmentation. Our preliminary work based on this idea
appeared in [11].

The paper is organized as follows. Section II formulates the
MSaM segmentation as a combinatorial optimization problem.
A branch-and-bound solution to the problem is formulated
in Section III. The experimental results are presented in
Section IV, and Section V enlists the concluding remarks.

II. FORMULATION

Consider a set of image correspondences
, where and are

image coordinates of the th correspondence. The relationship
among various object structures and motions in a scene can be
expressed as

(1)

Here, is the fundamental matrix [5] for the th rigid body
in the scene, and is the set of funda-
mental matrices of rigid bodies in the scene. The indicator
function is one when the th correspondence belongs to
the th rigid body and is zero otherwise. A label field

is associated with the indicator function
such that, if . The goal of MSaM segmenta-
tion is to estimate the label field . Once the label field is known,
the least squares estimate of the fundamental matrix can be
computed as

(2)

Here, is a distance measure such as symmetric transfer error,
reprojection error or Sampson approximation [5].

On the other hand, if s are known, the maximum likelihood
estimate for the label of the th match is given by

(3)

Equations (2) and (3) represent parameter estimation and label
estimation or segmentation steps respectively. Since these steps
are interdependent, the MSaM problem can be solved iteratively
to maximize the likelihood of the correspondences. Assuming
that the uncertainties in the matches are normally distributed,
with zero mean and standard deviation , the log likelihood of
the fundamental matrices is given by

(4)

where

(5)

This optimization procedure also assumes that the number of
objects is known a priori. This assumption is unrealistic in
most of the scenes. Since the likelihood of the correspondences
increases as is increased, the likelihood alone cannot be ap-
plied to select an optimal value of . A model selection cri-
terion such as the Bayesian information criterion (BIC) or the

Fig. 1. Spatially coherent sampling.

Akaike information criterion (AIC) can be utilized to select the
optimal [12]. These criteria penalize the likelihood in propor-
tion of . A generalized cost function to incorporate this idea
can be defined as

(6)

where is a positive constant. For BIC, and
for AIC, NM. is the number of free parameters per
cluster. The first term of (6) gives the negative log likelihood of
the model, which decreases with increase in . The second term
of (6) is the penalty term, which increases with increase in .
Thus, the minimum cost compromises between the likelihood
and the number of clusters to select an optimal value for .
The cost function in (6) can be minimized by varying and
iteratively optimizing the likelihood in (4) for that value of .

Alternative to this approach is a simultaneous model selec-
tion and segmentation approach. In this approach, multiple hy-
potheses for fundamental matrices where
are generated by local sampling of the correspondences. Fig. 1
shows three different motions marked with and and the
outliers marked by . RANSAC is applied to correspondences
in the circular spatial neighborhood of a correspondence to esti-
mate . Use of the spatial neighborhood ensures that RANSAC
can correctly and quickly estimate hypotheses for fundamental
matrices. Once these hypotheses are known, the MSaM seg-
mentation problem is reduced to a combinatorial optimization
problem to select hypotheses out of total hypotheses.
Note that there are possible solutions for this problem.
Thus, even for a moderate value of , an exhaustive search
becomes intractable. However, the nature of the problem allows
us to use a branch-and-bound approach to obtain an optimal so-
lution in a reasonable time for practical problems.

III. BRANCH-AND-BOUND

The branch-and-bound approach [13] to global optimization
splits an optimization problem into smaller subproblems. For
these subproblems, upper and/or lower bounds on the cost func-
tion are estimated. These bounds are used to eliminate the sub-
problems that would not lead to an optimal solution. For the
subproblems that survive, splitting and bound calculation is con-
tinued till all the subproblems are explored. The branch-and-
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bound procedure is applied in diverse areas such as optimal fea-
ture subset selection [13]–[15], image registration [16], rate-dis-
tortion based coding [17], job scheduling [18], [19], and clus-
tering where number of clusters are known [13], [14], [20]. The
rest of this section constructs a branch-and-bound algorithm for
the optimization of the cost function in (6).

A branch-and-bound algorithm requires formulation of var-
ious components such as branching, bounding, pruning and re-
tracting [13]. Apart from bounding, all the other components
can be represented as a rooted tree. In the following subsection,
the tree representation of the MSaM segmentation problem is
formulated.

A. Solution Tree

An ordered set gives hypotheses
for the fundamental matrices and of them have to be
chosen to minimize the criterion in (6). All possible solutions
of this optimization problem can be represented as a rooted tree.
Each node of the tree represents a solution. A node is also a par-
tial solution for its descendent nodes. It is important that every
solution is listed only once to avoid unnecessary computations.
This can be ensured by creating child nodes that are different
than:

• left siblings;
• ancestors;
• left siblings of ancestors.

A simple way of generating such a solution tree for is
shown in Fig. 2. The figure includes an additional null hypoth-
esis which is shown as . According to the null hy-
pothesis, none of the hypotheses is valid for a given image
correspondence. This means that the match is an outlier. The
null hypothesis is introduced in detail later in the section. Note
that, in a solution tree of height

• ;
• left sibling right sibling.

These two conditions ensure that the rule stated above to gen-
erate the child nodes is followed. Note that this gives rise to
a binomial tree of degree [21]. This tree has the following
properties.

• The tree has nodes, and each node corresponds to a
solution.

• The height of the tree is which is equal to the largest
possible value of .

• At any given depth , the tree has
nodes.

The solution tree can be explored by search algorithms such as
breadth first search and depth first search. The depth first search
was chosen to take advantage of the recursive relationships of
various computations which will be clear in the discussion later.
In general, the depth first search avoids the exponential space
complexity as well. A branch-and-bound search algorithm can
be applied as a series of branch forward, branch right, and re-
traction operations.

To understand the various tree operations and their physical
interpretation, it is assumed that the circled node in Fig. 2 in-
dicates the current search location. The current location can be
represented by the nodes traversed to reach it, i.e., . This
means that the null hypothesis, hypotheses and are in-

Fig. 2. Solution tree for� � � and a null hypothesis, number in the rectangle
indicates extended representation for the node.

cluded in the current solution. Additionally, a binary represen-
tation for the node can be defined. In an bit wide binary
representation, the nodes traversed to reach the current node are
represented by “1” and the hypotheses that are not traversed are
indicated by “0”.

With a slight abuse of notation, this binary notation is ex-
tended to include a representation for the partial solutions. The
hypotheses that can be traversed in the future are denoted by
(don’t care) in this extended representation. By replacing s by
0s for a node, its extended representation as a partial solution
can be turned into a binary representation as a solution. Thus,
the circled node in Fig. 2 is represented by . The extended
representation indicates that the current solution is 00101, and
through s it indicates that it is a partial solution for the solu-
tions 01101, i.e., , 10101, i.e., , and 11101,
i.e., .

A branch forward operation moves deeper in the tree by one
level. After a branch forward operation, the partial solution

would lead to . In terms of the extended
representation, the trailing is replaced by “1.” A branch
forward operation adds one more hypothesis to the solution.

A branch right operation moves to the sibling branch towards
right. In the extended representation, the leading “1” is replaced
by “0” and the trailing is replaced by “1.” The solution

would branch right to give the solution . A
branch right operation replaces the last included hypothesis
with the next hypothesis. Thus, the number of hypotheses after
the branch right operation remains the same.

A retraction moves the solution one level up the tree. A re-
traction is carried out when no forward or right branching is
possible. Solution is the result of the retraction at the cir-
cled node. For the extended representation, the operation first
replaces leading 1 with and then all the leading “0s” with s.
Note that a retraction is generally followed by a branch right
step. The branch-and-bound algorithm is terminated when a re-
traction leads to the root node.

B. Monotonicity of Partial Costs

The solution representing a node at depth be given
by . The
hypotheses correspond to fun-
damental matrices respec-
tively. The minimum distances at depth are given by
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and corre-
sponds to the minimum distance for the th match among the
current set of hypotheses

(7)

The cost function for the solution can be written as

(8)

The cost function is made up of two terms, one corresponding
to the negative log likelihood and the other corresponding to
the penalty.

Equation (7) can be rewritten as

(9)

Thus, from , the newly formed can be calcu-
lated incrementally with (9). When a new hypothesis is added
to the existing partial solution, the matches which are better ex-
plained by the new hypothesis are reassigned to the new hy-
pothesis while others remain unchanged. Additionally, it is clear
from (9) that

This suggests that

(10)

(11)

when a new hypothesis is added, the penalty term of the cost
function increases by while the negative log likelihood term
decreases or remains the same. These monotonicity properties
are used in the following subsection to establish a lower bound
on the cost function.

Leading from the monotonic decrease of the negative log
likelihood and the linear increase of the penalty term, a mono-
tonicity requirement can be imposed on the optimal solution. A
likelihood value for a hypothesis can be defined as
increase in the negative log likelihood of the solution if
is removed from the solution to form a new solution
(Note that and are different if ). Sim-
ilar to the likelihood value, the per pixel value of hypothesis
at depth for pixel , can be defined as

(12)

where is the minimum distance for the th match
with an updated set of hypotheses

. From the definition, the likelihood value can be written in
terms of the per pixel value of a hypothesis as

(13)

Using these definitions, the proof of the monotonicity of the cost
function can be constructed.

Theorem 3.1: The per pixel value of a hypothesis for the
pixel is maximum when it is first added, i.e., for any

.
Proof: A hypothesis is first added at depth . For

depth, is not part of the solution and has zero per
pixel value. From (7) and (12), the per pixel value of the hypoth-
esis for the pixel when is

(14)

(15)

where

if
otherwise

is a function which maps negative values to zero while keeping
positive values unchanged. When

(16)

Comparing (15) and (16), for any

(17)

Theorem 3.2: For optimality of a solution , it is neces-
sary that for all .

Proof: If the solution is optimal, then for any

(18)
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Theorem 3.3: If the initial likelihood value of a hypothesis
, any solution leading from the current partial

solution cannot be optimal.
Proof: From (13) and (17)

(19)

If then

(20)

Then according to Theorem 3.2, any solution which includes
cannot be optimal.

If then . Thus, for
Theorem 3.3 to hold, the cost function must be monotonically
decreasing.

C. Lower Bound on Cost

To establish a lower bound on the cost, a complementary vari-
able can be defined as

The variable gives the minimum of distance measures
from all the hypotheses which can be included in the solution
in the future. In case of the variable , its value solely
depends on the last node . As there are only possibilities
for the value of can be precomputed to speed up
the branch-and-bound process. Similar to can
also be calculated incrementally as

Consider a possible partial solution for
. The variable at level can be computed as

Now for the same example, the complementary variable is
given by

With help of the complementary variable, the lower bound on
the solutions leading from is

If , then the current partial solution can be
safely abandoned as it would not lead to a better solution than
the current optimal solution .

Fig. 3. Computation of the lower bound on the cost for � � � and the node
��� �� ��.

Fig. 3 depicts the computation of the bound. Each stack of
parallelograms indicates various quantities involved in bound
computation and arrow-heads leading to a parallelogram indi-
cate a minimum taken over the parallelograms attached to the
arrow-tails.

D. Null Hypothesis Likelihood

Matching errors are common in the MSaM segmentation
problems. These outliers can severely deteriorate the quality
of the solutions achieved for the MSaM segmentation. The
outliers can be assumed to be uniformly distributed throughout
the image with likelihood . For ease of notation, it is assumed
that

With introduction of this outlier likelihood as the null hypoth-
esis, the proposed MSaM segmentation scheme acts as a simple
redescending M-estimator [22].

E. Branch-and-Bound Algorithm

Based on the monotonicity requirement and the lower bound,
the branch-and-bound segmentation algorithm is listed below.

1) Initialization: Set the tree level , the current node
and the current optimal cost .

2) Generate child nodes: Initialize

3) Select a new node: If is empty, go to step (5). Oth-
erwise, set where . Set the current
solution . Delete from .

4) Check bounds:
• Compute and .
• If , set and .
• If or , go

to step (3).
• If and , set

and go to step (2).
5) Backtrack to the lower level: Set . if go

to step (3), otherwise terminate the algorithm.
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Fig. 4. Flowchart of the proposed algorithm, highlighted portion of the chart
checks for various bounds.

The flowchart of the algorithm is shown in Fig. 4. In the fol-
lowing section, the branch-and-bound hypothesis selection was
implemented and the achieved results are presented.

IV. EXPERIMENTAL RESULTS

The proposed MSaM segmentation approach was imple-
mented and tested with synthetic data and publicly available
data sets. The segmentation algorithm was implemented in
MATLAB and executed on a Core 2 Duo processor operating
at 2.33 GHz as a single thread.

To generate the motion hypotheses, for each image corre-
spondence, the fundamental matrix was computed from circular
neighborhood of the correspondence. The fundamental matrices
were computed using “Structure-and-Motion Toolkit” from
[23]. Similar to RANSAC, outliers and inliers were selected
for each fundamental matrix with as the threshold. To avoid
similar repeated hypotheses, a hypothesis with smaller support
was suppressed when it had substantial % inliers overlap-
ping with a larger hypothesis. Finally, the surviving hypotheses
were arranged in a decreasing order of the number of inliers.
The Bayesian information criterion (BIC) was optimized for
these hypotheses to select the optimal hypotheses combination.

A. Synthetic Data

The proposed MSaM segmentation approach was first tested
with synthetic data. For the experiments, 100 random 3-D mo-
tions were generated with [23].1 These motions were combined
together to form various experimental data sets. The goal of
these experiments was to test effectiveness of the approach for
detecting clusters of varying size and for identifying varying
number of clusters. The results for the experiments are shown
in Fig. 5 and are discusses in the rest of this subsection. Four
different sets of experiments were carried out. The experimental
results present cluster detection accuracies and segmentation ac-
curacies for each of the set.

1) Set 1—50 Outliers Cluster of Varying Size 10 to 50:
For the first experiment in this set, 10 correspondences from one
of the 100 motions were randomly selected. One sample each
from 50 other motions was selected to form a set of outliers. The
MSaM segmentation was carried out to estimate the number of
clusters and their memberships. The process was repeated 100
times. The experiment was repeated by changing the size of the
cluster to 20 (experiment 2), 30 (experiment 3), 40 (experiment
4) and 50 (experiment 5). For this set of experiments, the ex-
pected number of clusters was 2, one for the outliers and one for
the motion with varying number of samples. Since the frame-
work detects at least one motion cluster and one outlier set, as
seen in Fig. 5(a), 2 clusters are always detected irrespective of
the varying inlier cluster size. This leads to a 100% cluster detec-
tion accuracy for all the experiments. Thus, for this experiment,
the cluster detection accuracy is invalid. However, it should be
noted that the number of clusters is rarely overestimated.

The outliers were also included in estimating the segmenta-
tion accuracy, i.e., to reach 100% accuracy all the inliers must be
labeled as one cluster while all the outliers should be labeled as
the other cluster. It can be seen that for the inlier cluster size of
10, the segmentation accuracy is 79.1% which indicates that ma-
jority of 83.33% outliers are correctly identified. As the varying
cluster size rises to 20 and beyond, the segmentation accuracy
is more than 94%.

2) Set 2—50 Outliers Cluster of Size Cluster
of Varying Size 10 to 50: The second set of experiments was
carried out by adding a randomly selected motion with 50 cor-
respondences to the data in the first experiment. Thus, the ex-
pected number of clusters was 3 in this experiment; one for the
outliers, one for the motion of size 50 and one for the inlier mo-
tion with varying cluster size. When varying cluster size is 10
(experiment 1), the proposed method fails to detect that cluster
95% of times [Fig. 5(b)]. This happens as it is difficult to ob-
tain a clean sample to detect the correct motion hypothesis due
to the large number of outliers compared to the inliers. Addi-
tionally, for less number of samples it might be “cheaper” to
explain them as outliers rather than assigning them to a new
cluster. In this scenario, the expected segmentation accuracy is

% if all the outliers and the in-
lier cluster of size 50 is correctly identified. The experimental
segmentation accuracy is 88.67% which is close to the expected
accuracy. When the varying cluster size becomes 20 (experi-
ment 2), the cluster detection accuracy is 98%. As the size of
the cluster goes beyond 30 (experiments 3, 4, and 5) the cluster

1Function ‘torr gen 2view matches’ with the default parameters was used.
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Fig. 5. Synthetic data cluster detection and segmentation accuracy. (a) Set 1—50 Outliers �� cluster of varying size 10 to 50. (b) Set 2—50 Outliers �� cluster
of size �� � � cluster of varying size 10 to 50. (c) Set 3—50 Outliers � � clusters of size 50 each � � cluster of varying size 10 to 50. (d) Set 4—50 Outliers
� � clusters of size 50 each � � cluster of varying size 10 to 50.

detection accuracy reaches almost 100% and the segmentation
accuracy percentage reaches about 95.

3) Set 3—50 Outliers Clusters of Size 50 Each
Cluster of Varying Size 10 to 50: The third set of experiments
was carried out by adding a randomly selected motion with
sample size 50 to the data in the second experiment. The ex-
pected number of clusters is 4 in these experiments. Failure to
detect the motions which have 10 samples continues in this set
of experiments. However, the cluster detection accuracy drops
to 95% for the cluster size of 20. This happens because as the
number of correspondences becomes larger, adding a cluster is
more “expensive”.

4) Set 4—50 Outliers Clusters of Size 50 Each Cluster
of Varying Size 10 to 50: The fourth set of experiments was car-
ried out by adding a randomly selected motion with sample size
50 to the data in the third experiment. The cluster detection ac-
curacy as well as segmentation accuracy in this case is slightly
lower compared to previous experiments. However, this is ex-
pected due to increase in clustering penalty.

In the other synthetic data experiment, “Spinning wheels” test
data from [24] was used. This sequence contains four rotating
objects, with 50 tracked points each, with 50 outliers. Frames
1 and 3 of the sequence were used in the experiment. After
sampling and non maximal suppression, 22 hypotheses were se-
lected. As seen in Fig. 6, the proposed approach detects 4 clus-

Fig. 6. Spinning wheels: Correspondences between two frames, each cluster is
denoted by different color, matches marked by red are outliers.

ters along with outliers. The total number of solutions explored
by the branch-and-bound process was 2043.

B. Real Data

For all the real data used in the experiments, sparsely matched
features were provided in the data set. For the first experiment
with real data, “Box-book-mag” and “Desk” image pairs from
[10] were used. “Box-book-mag” pair has three independently
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Fig. 7. Box-book-mag: (a) Correspondences between two views, each cluster is denoted by different color, matches marked by red are outliers; (b) segmentation
result for the first view; (c) segmentation result for the second view.

Fig. 8. Desk: (a) Correspondences between two views, each cluster is denoted by different color, matches marked by red are outliers; (b) segmentation result for
the first view; (c) segmentation result for the second view.

Fig. 9. Car-truck-box: (a) Correspondences between two views, each cluster is denoted by different color, matches marked by red are outliers; (b) segmentation
result for frame 1; (c) segmentation result for frame 8.

moving objects while the camera is stationary. Fig. 7(a) shows
correspondences between the image pair with each object in-
dicated by a different color. The red colored matches are the
detected outliers. For the “Desk” image pair shown in Fig. 8,
there are three moving objects namely the pile of books, the
computer screen and the journal. Although the camera has also
moved, there are no matches available for the background. Thus,
the background motion is not detected. The result of segmenta-
tion can be seen in Figs. 8(b) and (c).

In the next experiment, the proposed method was applied to
the “car-truck-box” sequence used by Vidal et al. [25], [26].
The motion between frame 1 and frame 8 of the sequence was
analyzed. In this sequence, there are three different motions.
The box lies on a rotating desk, while the car and the truck
are moved away from each other with hands. As seen in Fig. 9,
three moving objects are correctly identified; however, some of

the correspondences are incorrectly assigned. This is due to the
sampling scheme used, rather than the cost function being opti-
mized. If the optimal motions are subset of the hypotheses being
constructed, then the segmentation results are guaranteed to be
optimal with respect to the cost function.

In the next sequence, taken from Sugaya and Kanatani [27],
has a single moving object, i.e., the car. However, the camera is
also moving for this sequence. Frames 10 and 15 are used for
segmentation in the experiment. The egomotion of the camera
and the motion of the car are correctly segmented, and are shown
in Fig. 10(c).

Finally, the proposed approach was tested with JHU155 data-
base sequences [28], which include various checkerboard and
traffic sequences, with two or three motion groups. The “cars3”
sequence shown in Fig. 11(a) has two moving cars captured
by a moving camera. Fig. 11(b) gives segmentation results for
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Fig. 10. Kanatani: (a) Correspondences between two views, each cluster is denoted by different color; (b) segmentation result for frame 10; (c) segmentation
result for frame 15.

Fig. 11. Sequences from JHU155 database: Top: Segmentation result with correspondences for the first view Bottom: Segmentation result for the second view
(a) “cars3” sequence; (b) “people1” sequence; (c) “truck2” sequence; (d) “1R2TCR” sequence.

TABLE I
EXECUTION SUMMARY FOR THE EXPERIMENTS

the “people1” sequence which depicts a pedestrian captured by
a moving camera. The “truck2” sequence is segmented in the
moving vehicle and the background in Fig. 11(c). The checker-
board sequence in Fig. 11(d), with one rotating object and one
translating object captured by a rotating camera, was also suc-
cessfully segmented by the proposed approach.

Table I shows a summary of the execution of the proposed
method for all the experiments. Fraction of solutions explored
shown in the table is calculated as

As seen from the table, in all the cases, the fraction of the so-
lutions explored is very small. This is also reflected in the exe-
cution speed. Note that the execution times for search alone are
listed, and they do not include sampling and precomputing in-
volved. The speedups achieved increase with increase in ,
since more solutions are generally rejected implicitly by re-
jecting a partial solution. In our more recent work [29], the com-
putational complexity of the algorithm is treated in detail.

V. CONCLUSION AND FUTURE WORK

A versatile multiple structure-and-motion segmentation
scheme was proposed and its effectiveness was demonstrated
through experiments. The branch-and-bound scheme can easily
be scaled for parallel processing by solving one branch of the
problem on a processor. Scheduling of these branches can be
also an interesting direction of research. Although the method
is proposed for a multibody SaM segmentation, it can be also
applied to various other computer vision problems involving
clustering such as segment based stereo [30], [31] and dense
motion segmentation [3]. Since the outcome of the method
heavily depends on the initial hypotheses chosen, various
available guided sampling approaches have to be evaluated as
to how well they explore and represent the solution space. The
current approach can also be extended to an iterative approach.
After each iteration of segmentation, fundamental matrices can
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be recalculated based on membership of the matches and these
can added as additional hypothesis to repeat the segmentation.
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