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Abstract—The goal of this paper is to present a weighted
likelihood discriminant for minimum error shape classification.
Different from traditional maximum likelihood (ML) methods, in
which classification is based on probabilities from independent
individual class models as is the case for general hidden Markov
model (HMM) methods, proposed method utilizes information
from all classes to minimize classification error. The proposed
approach uses a HMM for shape curvature as its 2-D shape
descriptor. We introduce a weighted likelihood discriminant func-
tion and present a minimum classification error strategy based on
generalized probabilistic descent method. We show comparative
results obtained with our approach and classic ML classification
with various HMM topologies alongside Fourier descriptor and
Zernike moments-based support vector machine classification for
a variety of shapes.

Index Terms—Hidden Markov models (HMMs), image shape
analysis, pattern classification.

I. INTRODUCTION

OBJECT recognition is a classic problem in image pro-
cessing and computer vision. Among others, object recog-

nition based on shape is widely used. Given the volume of lit-
erature and the variety of the approaches developed for shape
recognition, the problem can be classified into two categories:

1) cluster shapes that are similar to each other;
2) classify the given shape into one of the predefined classes.
Category 1 and Category 2 will be referred to as shape clus-

tering and shape classification problems, respectively. The fun-
damental difference between the two is that the classification
problem has a set of predefined classes while the clustering
problem does not. In this paper, we will be concentrating on the
shape classification where shapes are similar. This is an appli-
cation of wide interest for surveillance, e.g., separating vehicle
types (civilian surveillance application), classifying airplane or
tank views (military surveillance applications), etc.

The first step towards the design of a shape classifier is fea-
ture extraction. Shape can be represented either by its contour
or by its region [1], [2]. Curvature, chain codes, Fourier de-
scriptors, etc., are contour-based descriptors while medial axis
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transform, Zernike moments, etc., are region-based features.
Contour-based descriptors are widely used as they preserve the
local information that is important in classification of complex
shapes. Additionally, contours are the most natural way of
representing and recognizing shapes by human beings. We
choose curvature, which is the simplest and most natural of
the contour-based shape descriptors. However, our approach
can be modified to incorporate any other descriptor that pre-
serves the local information of the contour. Examples of such
descriptor include tangent space representation [3] and beam
angle statistics (BAS) [4].

Feature extraction is followed by shape matching. In recent
years, dynamic programming (DP)-based shape matching is
being increasingly applied [5]–[8]. DP approaches are able
to match the shapes part-by-part rather than point-by-point
and are robust to deformation and occlusion. Hidden Markov
models (HMMs) are also being explored as one of the possible
shape modeling and classification frameworks [9]–[13]. HMM
has been used successfully for analyzing complex signals such
as speech [14], gesture [15], handwriting [16], etc. Apart from
having all the properties of DP-based matching, HMM provides
a probabilistic framework for training and classification.

The authors in [12] were the first to apply HMM to shape
classification. They used autoregressive model for shape repre-
sentation. Results were presented for stationary as well as non-
stationary HMMs with 2 to 6 states. Arica and Vural [9] applied
a circular HMM topology with eight states to model the shape.
The shape was expressed in terms of 8-directional Freeman’s
code. This model topology is insensitive to the starting point and
the sequence length. Their work presented results for content-
based image retrieval (CBIR) rather than shape classification.

Cai and Liu [11] applied a Fourier descriptor-based HMM
topology to classify the shapes. They modified HMM param-
eter re-estimation procedure to deal with the proposed HMM
structure. Recently Bicego and Murino [10] proposed a curva-
ture descriptor-based HMM. Curvatures are treated as mixtures
of Gaussian and consequently an ergodic HMM is developed.
The approach also applied Bayesian inference criterion (BIC)
to select the optimum number of HMM states. Their work pro-
vides comprehensive results for classification with deformation,
noise, and occlusion. These approaches presented classification
results for very dissimilar shapes. However, in practical situa-
tions shapes to be classified are generally very similar. To handle
such situation modification to existing approaches is mandatory.

Apart from the obvious advantages of HMM, such as robust-
ness and time warping capability, it provides two levels of de-
scriptions. Hidden state sequence can be considered as a simple
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description and the likelihood description can be considered as
a complex description. We use the state sequence description
to achieve the invariant starting point detection and likelihood
description for the classification. For a closed shape, choosing
an invariant starting point is important so that point-by-point
or segment-by-segment correspondence between two different
shapes can be established. We propose an invariant starting point
detection approach that minimizes difference between hidden
state sequences to achieve this correspondence. HMM also pro-
vides inherent measure for classification in terms of maximum
likelihood (ML) criterion, which is not the case for the other de-
scriptions. The HMM approaches discussed above apply ML as
their classification criterion. Due to good generalization prop-
erty of HMM, applying ML criterion to classify similar shapes
does not provide good classification. Additionally, ML criterion
is evaluated using information from only one class and does not
take advantage of information from the other classes. As ML
criterion is designed to maximize likelihood of a single class, it
does not guaranty good classification performance. Generally,
shapes can be discriminated using only parts of the boundaries
rather than comparing entire boundary. ML criterion does not
provide such mechanism. Recently, Bicego et al. [17] have pro-
posed a similarity-based classification approach for HMM that
improves ML classification scheme. Observations are first trans-
formed into a similarity space, which is done by calculating
likelihood with respect to a few reference HMMs. The simi-
larity space dimensionality is reduced by traditional techniques
such as principle component analysis (PCA) or Fisher discrim-
inant, followed by nearest neighbor classification. The method
presents a generalized sequence classification approach; how-
ever, it does not take advantage of the nature of the 2-D shape
classification problem. Combination of HMM and neural net-
works (NN) has been used in field of handwriting recognition
[18], speech recognition [19]–[22], sonar signal classification
[23], [24], etc., to improve upon the classification capability of
HMM. However, researchers have preferred HMM combined
with minimum classification error (MCE) formulation in speech
recognition [25]–[27].

To overcome the shortcomings of ML classification, we pro-
pose a weighted likelihood discriminant for shape classification.
The weighting scheme emulates comparison of parts of shape
rather than the entire shape. The weights are estimated by ap-
plying generalized probabilistic descent (GPD) method to MCE
formulation [28], [29]. Unlike ML criterion, the misclassifica-
tion measure used with GPD combines information from all the
classes to estimate the weights. As GPD method is designed to
minimize the classification error, the proposed classifier gives
good classification performance with similar shapes. To the best
of our knowledge, this is the first effort to combine HMM and
GPD to tackle the 2-D shape classification problem. Our prelim-
inary work based on this idea appeared in [30]. Subsequently, a
short version of current paper was published in [31].

This paper is organized as follows. Sections II and III give
an overview of the HMM and GPD methods, respectively. The
shape description phase of the proposed method is discussed
in Section IV, while Section V formulates the weighted like-

lihood discriminant function. The GPD method-based training
algorithm for the proposed discriminant function is described in
Section VI. Experimental results are presented in Section VII,
and the paper ends with the conclusions and suggestions for fur-
ther research in Section VIII.

II. HIDDEN MARKOV MODEL

HMM is a stochastic signal model widely used in the field
of speech processing. Recently, many researchers have applied
ideas of HMM to shape recognition [9]–[13]. HMM can explain
an observation sequence in terms of an un-
derlying state sequence . In this section, we
review HMM briefly. The details of HMM and its applications
can be found in [14].

HMM is characterized by following parameters.
1) , set of states. , where is number

of states. State of HMM at instance is denoted by .
2) , state transition probability distribution.

denotes the probability of changing the state from to

(1)

3) , observation symbol probability distribution.
gives probability of observing

symbol in state at instance

(2)

4) , initial state distribution. gives probability
of HMM being in state at instance

(3)

For convenience, HMM can be compactly denoted as

(4)

The conventional parameter estimation procedure for HMM
utilizes information from single class to train the HMM param-
eters. More classes can be added easily to the classifier without
training the entire classifier again. Training is needed for the
newly added class alone to incorporate the new class. On the
other hand, HMM-based classifier cannot discriminate between
similar shapes due to its ability to generalize. In practical situ-
ations, classification problems generally involve similar shape
classes. A better training strategy is, thus, required to handle
such situations. In the following section, we introduce the GPD
method for training of a discriminant function that performs
better in this condition.

III. GENERALIZED PROBABILISTIC DESCENT METHOD

The formulation of GPD [28], [29] is closely related to the
concept of MCE learning. Consider a problem of classifying
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an observation vector into one of the classes,
, by discriminant function approach. According to

probabilistic descent theorem, the classifier parameters can
be iteratively re-estimated to minimize a cost function. This cost
function is a smooth representation of classification error, which
means minimization of the cost function leads to the MCE.

MCE formulation is a three-step procedure. The first step is
to select a discriminant function . This can be any con-
ventional discriminant function such as a distance measure, ML
or a function designed to suit the classification scheme under
consideration. For the discussion in this section, we consider a
discriminant that is to be maximized to identify the correct class.
An observation can be classified using this discriminant as

where (5)

Note that the above classification process is not differentiable,
due to which the discriminant functions cannot be optimized
with gradient search techniques.

A misclassification measure is introduced in the second step
to embed the above decision process in a continuous differen-
tiable functional form. One way of defining such a measure is

(6)

where is a positive smoothing factor. The misclassification
measure has two components, one corresponding to the correct
class , i.e., and the rest, which corresponds to in-
correct classes. Thus, in (6), controls the degree to which the
maximum of the discriminant from incorrect classes dominates
the expression in the bracket. Note that always

and minimizing for correct class corresponds to maximizing
(i.e., minimizing ) that is required for the correct classi-

fication. Thus, for the correct classification, (6) has to be mini-
mized. In the extreme case, when

(7)

Here, is the maximum of the discriminant function of incor-
rect classes. Negative indicates the correct classification and
positive indicates a classification error. This is equivalent to
classification shown in (5).

In the third step, a cost function is defined that maps the mis-
classification measure between zero and one. Given in the fol-
lowing is one of the possible cost functions:

(8)

To minimize the classification error, above cost function also has
to be minimized. Similar to the misclassification measure, it is
required that the discriminant function, and the cost function are

continuous and differentiable functions of . This ensures that
numerical methods such as gradient search can be applied to op-
timize the parameters . According to the probabilistic descent
theorem, parameter re-estimation rule for the above formulation
is given as

(9)

where is a positive definite matrix and is a small real
number. is called learning factor and it controls the speed and
accuracy of convergence of the parameters.

With properly formulated misclassification measure, the
GPD method can utilize information from all the classes for
training and can be directly used to train the HMM discriminant
function, i.e., the ML criterion. The other training approaches
such as maximum mutual information (MMI)-based training
[32], which use information from all the classes, also exist.
However, the classification performance of properly designed
and ML trained HMM cannot be improved significantly with
MMI or GPD training of HMM [29]. Therefore, we stay with
the optimally designed HMM as described in Section IV in
our paper and make our contributions in designing robust
discriminant functions with minimum error.

IV. SHAPE DESCRIPTION WITH HMM

A. HMM Topology

To achieve good classification results, ML approaches need
carefully designed HMM topology with a large number of
Gaussian mixtures. For the proposed approach in this paper,
the description phase employs HMM topology proposed by
Bicego and Murino [10]. The curvature [33] of the shape is
used as the descriptor. Before formulating HMM, we briefly
try to understand the underlying process of shape curvature.
Any shape can be assumed to be formed by various segments,
each of which has a constant curvature. Any deviation from
the constant curvature can be due to the noise or due to the
details of the shape. Each of these segments can be treated as
a state of the HMM. Each state can be modeled as a Gaussian
distribution with mean representing the constant curvature of
the segment and standard deviation representing the deviation
from constant curvature of the segment. For simple shapes,
detecting the number of constant curvature segments might be
possible. However, for the complex shapes detecting number
of constant curvature segments is difficult. In addition, for a
complex shape, number of these segments can be significantly
high. In this case, computational complexity of HMM would
increase. To determine the number of HMM states automati-
cally in such cases, we apply same strategy as [10]. In the rest
of the section, we discuss the formulation of the HMM for the
shape.

The shape is first filtered with large variance Gaussian filter
to reduce the effect of noise in curvature estimation. The filtered
shape is normalized to a fixed perimeter to make the curvature
invariant of the scale. Let the normalized shape be indicated
by and for , where

is the normalized perimeter of the shape, and indicates
the coordinates of th point of the shape. Finally, approximate
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curvature at each point is calculated as the turn angle at that
point. The turn angle at point is defined as

(10)

The turn angle is treated as the observation for the HMM.
Each shape class is modeled by a -state ergodic HMM and ob-
servation symbol probability distribution, i.e., of each state
is modeled by a 1-D Gaussian distribution. the Gaussian mix-
ture model (GMM) [34] for clusters estimated from unrolled
values of curvature of samples of the shape, is used to ini-
tialize . Baum–Welch algorithm is
then applied to estimate the parameters of the HMM

.
In addition to these parameters, the number of HMM states
, is another important parameter. As increases, computa-

tional complexity involved in the training and the classification
increases. As the likelihood of the model increases with , ML
criterion cannot be used to select . We choose the optimum
for the HMM by applying the BIC [35]. BIC penalizes the like-
lihood of the HMM according to its complexity. In [10], BIC
is applied to GMM to select optimal , but this gives optimal

for the GMM and not for the HMM. In our approach, BIC is
applied to the HMM to ensure proper model selection. For the
HMM topology discussed, BIC can be written as

(11)

The penalty term in (11) is derived from number of free pa-
rameter of the model and the observation sequence length. The
number of states is selected to maximize the .

B. Invariant Starting Point Detection

Before we propose the weighted discriminant function, it is
important to detect the starting point invariantly as formulation
depends on it. Note that alignment of the shapes is not required
for training of HMM itself. Major axis-based rotation similar to
that of He and Kundu [12] can be used to detect invariant starting
point. However, in the case of some shapes, slight change in
the shape results in a large change in the major axis. Shapes
with a high degree of symmetry cannot be aligned properly with
the method. This method cannot detect reflection of shape. To
overcome this, we apply state sequence-based rotation to detect
the starting point of the shape. Recall that the shape is modeled
as a sequence of constant curvature segments. A comparison
between these segments gives the criterion for alignment for
our method. These segments are nothing but the optimum state
sequence for the HMM.

Consider a HMM trained with multiple
training samples. Let be the most likely
training sample

(12)

We call this sample the reference shape. Any closed shape
belonging to the class is to be aligned with the

Fig. 1. Invariant starting point detection: (a) reference shape (solid arrow indi-
cates reference starting point); (b) shape to be aligned (solid arrow indicates the
detected starting point and dotted arrow indicates the original starting point).

reference shape . The best path sequence for is given by

(13)

Similarly, the best path for is

(14)

Mismatch between these descriptions is defined as

(15)

where

if
if

(16)

and
if
if

(17)

Let indicate the reflection of shape and
be the corresponding mismatch with respect to the refer-

ence shape. The aligned shape is given as

otherwise

(18)

where

(19)

In summary, the difference between and is minimized by
circular shifting and reflecting to find an optimal rotation and
reflection combination. Figs. 1 and 2 show results of the method
when applied to one of the shape classes. Fig. 2(c) shows the
match between two shapes that is the difference .
Note that a similar plot can be obtained for . How-
ever, due to the symmetry of the shape it is not required here.
The maximum occurs at , which is the detected as the
starting point and is indicated by solid arrow in Fig. 1(b). In
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Fig. 2. Invariant starting point detection: (a) reference curvature vector; (b) observation to be aligned; (c) optimal path match; (d) aligned observation.

Fig. 3. Airplane shape classes: (a) Mirage; (b) Eurofighter; (c) F-14 wings closed; (d) F-14 wings opened; (e) Harrier; (f) F-22; (g) F-15.

the following sections, we assume that the starting point is al-
ready detected using this method and the obtained HMM de-
scription is used for the minimum error classification formu-
lation. An advantage of the proposed starting point detection
scheme lies in its robustness. Invariant starting point detection
for shapes requires calculations, where is the
number of classes, is the number of HMM states, and is
the perimeter of the shape. Thus, the proposed method is com-
putationally more expensive than simple rotation scheme based
on major axis calculation that requires only operations.
In a scenario where shapes are already aligned, this step can
be skipped completely. When shapes can be aligned correctly
with simple rotation scheme, that rotation scheme should be pre-
ferred over HMM-based scheme.

V. DISCRIMINANT FUNCTION FORMULATION

In this section, we formulate a minimum error classifier with
a weighted likelihood discriminant function. The discriminant
function is derived from the intuitive idea that the similar shapes
can be discriminated by comparing the parts of their boundaries.
Meaning, some parts of the shape contour play important role
in classification than the others. We signify the importance of
part of shape in classification by assigning weights to it. The
weights introduced in the discriminant function will be trained
with GPD method.

Consider observation sequence to be classified,
. We model the sequence with HMM

. One of the possible state sequences for the given
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observation sequence is given by . The proba-
bility of observation sequence is given by

(20)

Equation (20) is nothing but the ML criterion that is widely ap-
plied in classification problems. However, our goal is to weight
the observations individually and the individual observation
probabilities cannot be extracted from (20). To achieve this, we
express the ML criterion in terms of a forward variable .
Forward variable is defined as

(21)

Values of the forward variable can be calculated with the
forward procedure [14]. Probability of partial observation
sequence given the model can be written as

(22)

For , (22) reduces to

(23)

Similarly for

(24)

As observations and are independent, from (23) and (24)

(25)

Repeating the above procedure, it can be shown that for

(26)

Now, the logarithm of the ML criterion can be expressed in
terms of observation probabilities as

(27)

Fig. 4. Selection of HMM states for F14 (with its wings closed) based on BIC
(Arrow indicates optimal value of BIC).

This function gives equal importance to every point of the
shape in the classifications. Hence, we introduce a new discrim-
inant function that weights the curvature likelihood of shape
points according to their importance in classification.

The new discriminant function is given by

(28)

where is weighting function for class . provides ad-
ditional discrimination among the classes. These weights will
be tuned by applying the GPD method to minimize the clas-
sification error. The weighting function at individual observa-
tion can be estimated by applying GPD to the current formu-
lation. However, due to the large number of parameters (equal
to ), the convergence of GPD will be slower and will need
a large number of observation sequences for training. As men-
tioned previously in this section, to discriminate between sim-
ilar shapes, comparison between parts of their contour is suffi-
cient. As a result, shape can be weighted segment-by-segment
instead of being weighted point-by-point. Following this idea,
weighting functions are chosen to be windows that can adapt
their position, spread and height. Although any smooth window
function can be selected, our approach uses weighting function
given in (29), which is a sum of Gaussian shaped windows

(29)

Parameter governs the height, controls the position,
while determines spread of th window of th class. In this
case, we have only parameters to estimate. The discriminant
function can now be written as

(30)

In the next section, GPD method is applied to the above dis-
criminant function to formulate the training algorithm.
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Fig. 5. Weights for various classes: (a) initial weights for all classes; (b) weights for Mirage after GPD; (c) weights for F-14 open after GPD; (d) weights for F15.

TABLE I
CONFUSION MATRIX FOR ML CLASSIFICATION

VI. GPD ALGORITHM

To complete the formulation, we introduce a misclassification
measure for observation sequence of th class as

(31)

and the corresponding cost function as

(32)

As discussed in Section III, the probabilistic descent re-estima-
tion rule for parameters is given as

(33)

For the proposed method, is chosen to be identity matrix and
the learning factor, is chosen to be a small number compared
to the dynamic range of the parameter. The re-estimation rules

in iteration , for th window parameters of th class when
is the correct class are given by

(34)

(35)

(36)

for .
Partial derivatives appearing in (34)–(36) can be calculated

by chain rule as

(37)

(38)

(39)

where

(40)
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Fig. 6. (a) ML discriminant functions. (b) Weighted likelihood discriminant functions.

Fig. 7. Vehicle shape classes: (a) Sedan, (b) Pickup, (c) Minivan, and (d) SUV.

for correct class
for incorrect classes

(41)

(42)

(43)

(44)

Note that, in the above formulation, is treated as
a constant, because the HMM parameters are not affected by

the change in . Appendix A gives the detailed algorithm for
GPD-based training for the classifier.

VII. EXPERIMENTAL RESULTS

As mentioned before, we focus on shape classification
problem where shapes are similar. Most public benchmark
databases are designed to test shape retrieval based on a
similarity measure [36]–[38]. As we deal with the shape clas-
sification problem where shape classes are predefined and are
very similar, these data sets are not best suited for our problem.
The proposed method was tested with three different data sets,
one of which is a subset of MPEG-7 CE Shape-1 Part-B [38]
and two data sets are specially designed to test our method. The
first data set is comprised of airplane shapes and the second
data set included shapes of vehicles. The third data set we used
was a subset of the MPEG-7 CE Shape-1 Part-B data set that
was also used in [10] and [17] for experimentation.
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TABLE II
CLASSIFIER RECALL WITH OVERALL ACCURACY IN PERCENTAGE FOR AIRPLANE SHAPES

TABLE III
CLASSIFIER PRECISION IN PERCENTAGE FOR AIRPLANE SHAPES

TABLE IV
CLASSIFIER RECALL WITH OVERALL ACCURACY IN PERCENTAGE FOR VEHICLE SHAPES

TABLE V
CLASSIFIER PRECISION IN PERCENTAGE FOR VEHICLE SHAPES

A. Fighter Plane Shapes

The fighter airplane shape database included Mirage, Eu-
rofighter, F-14, Harrier, F-22, and F-15 [39]. Since F-14 has
two possible shapes, one when its wings are closed and another
when its wings are opened; the total number of shape classes
are seven. Each class includes 30 shape samples. The shape
database was created by taking digital pictures of die-cast
replica models of these airplanes from top. Pictures were
captured at 640 480 resolution, and were segmented using
Spedge and Medge [40] color image segmentation algorithm.
Contours of the segmented planes were used for training and
testing of the classifier. Fig. 3 shows the extracted shapes for
different classes.

Shapes were filtered with a Gaussian filter (standard devi-
ation ) and the shape perimeter was normalized to 256
points. Tenfold cross validation was carried out for the normal-
ized shapes [41]. For cross validation, the shape samples for
each class were split into ten equal subsets. Out of these, nine

subsets were used for training while one subset (that was not
used for training) was used for testing. This process was re-
peated for different combinations of training and testing sub-
sets. For the training samples of each class, HMM was built as
explained in Section IV. Initially, a broad range for number of
HMM states were considered and BIC was calculated. Fig. 4
shows plot of number of HMM states against likelihood and BIC
for F14 with its wings closed. It can be seen that BIC declines
steadily after five states as the penalty term in BIC grows rapidly
compared to the gain in likelihood. Similar trends were visible in
the other classes, as well. Thus, the optimum number of HMM
states for each class was selected on the fly by applying BIC to
models with 3 to 6 states. Sum of 20 Gaussian windows was
used for formulation and training of the discriminant function.
The window parameters were initialized to spread the windows
uniformly over the shape [refer to Fig. 5(a)]. The training vec-
tors were used to train the classifier with and .
Choice of smoothing parameters used, i.e., and , depends on
amount of training data available. Similar to -nearest neighbor
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or Parzen window classifiers, smaller the training data avail-
able more the smoothing required [29]. Additionally, smoothing
parameters also affect the optimization process. Smoother cost
function surface has less number of local minima and is more
tractable by gradient optimization. For all the experiments pre-
sented here, and were determined experimentally to maxi-
mize the classification accuracy.

For comparison, ML classification was carried out with op-
timal HMM after application of BIC. Table I gives classification
results for ML classification (HMM-ML). From the confusion
matrix of the ML classification, it can be seen that F-14 with
its wings opened is misclassified as the F-14 with wings closed
most of the times. This is because these shapes are very similar
in most of their boundary. In addition, closed wing F-14 shape
closely resembles the shape of a Mirage, leading to misclassifi-
cation of Mirage shapes.

Fig. 5 shows the initial and estimated weights for various
classes for one of the runs of the experiment. Weights for all
the classes are initialized as shown in Fig. 5(a). After training,
the weights modified to minimize the classification error can be
seen in Fig. 5(b)–(d) for classes Mirage, F-14 with wings open
and F-14, respectively.

Fig. 6 shows the ML discriminant functions and weighted
likelihood discriminant functions for the test vectors. In Fig. 6,
test vectors of the same class are grouped together. Labels just
above the horizontal axis indicate the correct class for the test
vector group and the dotted vertical lines separate the grouped
correct classes. For correct classification, discriminant function
of correct class should be maximum. The difference between
the ML discriminant function of the correct class and the other
classes is not clear in for all the classes. As a result, the clas-
sification accuracy for ML-based classification is not satisfac-
tory. On the other hand, correct class can be easily identified
for weighted likelihood discriminant, as difference between dis-
criminant function of the correct class and the other classes is
large. This large difference results into high classification accu-
racy for the proposed classifier.

Tables II and III compare overall classification accuracy,
recall and precision with conventional descriptors such as cur-
vature , Fourier descriptor , Zernike
moments combined with support vector machine
(SVM)-based classification, HMM with ML classification for
ergodic , circular and left right
HMM and proposed GPD-based weighted
likelihood classification . Fourier descriptor
were constructed for the normalized shape perimeter and
Zernike moments were generated to order 30 (254 moments).
Lagrangian SVM tools [42], [43] were used for SVM-based
classification. HMM with ten states were used in experimenta-
tion with circular and left right topologies.

B. Vehicle Shapes

In the second experiment, we classified the vehicle shapes
extracted from traffic videos using the motion information. Ap-
proach discussed in [44] was implemented and applied to out-
door videos to extract these shapes. The vehicles were classified
into one of the four classes: sedan, pickup, minivan, or SUV.

Videos were captured at resolution of 320 240. As object
extraction approach used does not deal with shadows, the
extracted car shapes are distorted in the bottom half due to
shadow. For each class, 30 samples were extracted from the
video. Extracted shapes were filtered with a Gaussian filter
(standard deviation ) to reduce the effect of the noise and
the shape perimeter was normalized to 128 points. Similar to
first experiment, tenfold cross validation was carried out for
this experiment. After training HMM for all the classes, an op-
timum number of HMM states were selected by applying BIC
to models with 3 to 6 states. Sum of 16 Gaussian windows was
used for formulation and training of the discriminant function
with and .

The classification accuracy was expected to be lower than the
first experiment due to following reasons.

• Shape samples show larger within-class variation, as
shapes of vehicles of different makes and models vary.

• The contours extracted show higher degree of deformation
due to the shadow problem in object extraction.

Comparative classification performance for individual class can
be seen in Tables IV and V.

C. Subset of MPEG-7 Ce Shape-1 Part-B

MPEG-7 CE Shape-1 Part-B data set includes 1400 shape
samples, 20 for each class [38]. Part of this data set was
used in HMM-based shape classification experiments in [10],
[17]. We use the same shape classes; however, we carried
out two different subexperiments: one with all the shape
samples and the other similar to [10] and
[17], where only 12 samples from each class are included

. We choose following seven classes: Bone,
Heart, Glass, Fountain, Key, Fork, and Hammer.

As seen in Fig. 8, the shape classes are very distinct, but
the data set shows substantial within-class variations. The first
subexperiment verifies that the proposed method performs sat-
isfactorily in such a scenario. The shapes were filtered with a
Gaussian filter (standard deviation ) to reduce the effect of
the noise and the shape perimeter was normalized to 256 points.
Similar to the preceding experiments, tenfold cross validation
was carried out for this experiment. After training HMM for
all the classes, an optimum number of HMM states were se-
lected by applying BIC to models with 3 to 6 states. The sum
of 20 Gaussian windows was used for formulation and training
of the discriminant function with and . Second
subexperiment uses leave one out (LOO) scheme for accuracy
calculation. Achieved accuracies are very close to the accura-
cies reported by Bicego et al. [17] with the same shapes being
classified. All the other parameters are same as the first subex-
periment. This facilitates direct comparison between the two
methods that aim to improve standard HMM ML classification
scheme. Overall classification accuracy with recall and preci-
sion are shown in Tables VI and VII.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we proposed a weighted likelihood discrimi-
nant function for very similar object shape classification based
on the GPD theory and HMM. HMM was applied as a robust
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Fig. 8. Part of MPEG-7 CE Shape-1 Part-B shape classes.

TABLE VI
CLASSIFIER RECALL WITH OVERALL ACCURACY IN PERCENTAGE FOR SUBSET OF MPEG-7 CE SHAPE-1 PART-B SHAPES

TABLE VII
CLASSIFICATION PRECISION IN % FOR SUBSET OF MPEG-7 CE SHAPE-1 PART-B SHAPES

descriptor for the individual classes and the weighted likeli-
hood discriminant function was used to discriminate amongst
them. The weighting emulates feature selection scheme that se-
lects salient features required to classify the shapes correctly. A
training algorithm based on GPD method to estimate the optimal
weights to minimize the classification error was formulated.

The performance of the proposed shape classification scheme
was tested with three different shape data sets, fighter airplanes,
vehicles, and subset of MPEG-7 CE Shape-1 Part-B data set. As
these data sets were not generated synthetically, the results ob-
tained for the classification are reliable in practical scenarios. In
the first experiment, ML-based classification accuracy of 79%
with the original ergodic model was improved to 99% by pro-
posed method and in the second experiment it was improved
from 63% to 84%. For MPEG-7 shape data set, the classification
accuracy is increased to 96% from 80%. Interestingly, circular
HMM has higher classification accuracies compared to the er-
godic HMM that are comparable with weighted likelihood clas-
sifier in all but one case. A comparison was also carried out with
Fourier descriptor and Zernike moments-based SVM classifier
to show comparable or better classification performance and ro-
bustness of the scheme.

Resilience to occlusion was the prominent reason why an
ergodic model was chosen instead of circular or left right
model for the shape description. Although our experiments
have demonstrated certain resilience to imperfectly segmented
objects, occlusion remains unsolved problem in our method.
However, we believe that occlusion can be handled on HMM
description level and are currently working on this issue.

At present, the weighting windows are spread uniformly over
the shape contour. However, these windows can be used as ex-
pert input to the classification system. One such example would
be weighting only top parts of vehicle shapes as bottom parts of
the vehicles are very similar, which, thus, are not important for
classification. In our experiments, we avoid this to show gener-
ality of our approach. Additionally, number of weighting win-
dows is currently adjusted heuristically and additional work is
needed to select this automatically.

APPENDIX A
GPD-BASED TRAINING ALGORITHM

Number of classes, Number of windows,
Number of training samples per class.
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for to do

for to do

Initialize window height , window position
and window spread .

end for

Calculate weights using (29).

end for

for to do

Correct class for current training sample.

Align the training sample with reference shape of th

class according to Section IV-B.

for to do

Calculate discriminant using (28).

end for

Calculate misclassification measure with (31).

Calculate cost function with (32).

Calculate partial derivative with (40).

for to do

Calculate partial derivative with (41).

for to do

Calculate partial derivatives
and with

(42)–(44).

Calculate partial derivatives
and with (37)–(39).

Calculate updated values of window parameters
from (34)–(36).

end for

end for

Calculate updated weights using (29) with updated
window parameters.

end for
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