A Comprehensive Analysis of Deep Learning Based Representation for Face Recognition

Mostafa Mehdipour Ghazi, <u>Hazım Kemal Ekenel</u> Istanbul Technical University, SiMiT Lab ekenel@itu.edu.tr

IEEE Computer Society Workshop on Biometrics 2016

Outline

- Motivation
- Face Representation with Convolutional Neural Networks (CNNs)
 - VGG-Face Network
 - Lightened CNN

Experiments and Results

- Face Occlusion
- Illumination Variations
- Pose Variations
- Misalignment
- Conclusion

Motivation

- Deep learning based face recognition
 - Increasingly applied for face recognition with promising results
 - Their capability to handle individual appearance variations has not been thoroughly assessed

Illumination

Occlusion

Alignment

Face Representation

- Higher layer portion of learned weights from pre-trained CNNs
- VGG-Face with a very deep architecture

• Lightened CNN is a computationally efficient network

Datasets

• AR Face Database for Face Occlusion

CMU PIE Database for Illumination Variations

Extended Yale Dataset B for Illumination Changes

Color FERET Database for Pose Variations

• The FRGC Database for Misalignment

Implementation

- Using the Caffe deep learning framework
- Face alignment with respect to eye centers
- Feature extraction from the first fully-connected (FC) layers
 - VGG-Face: 224x224 color image \rightarrow 4096-D feature set in FC6/FC7
 - Lightened CNN: 128x128 grey image \rightarrow 512-D feature set in FC1
- Classification using the nearest neighbors with cosine distance

Experiments on AR Database

- Frontal faces of subjects participated in two sessions
- Training: One image per subject with neutral expressions from the first session → 110 images/subjects
- Testing: Two images per subject per session, <u>one wearing a pair of</u> sunglasses (upper face occlusion) and one wearing a scarf (lower face occlusion) → 110 images per session

Testing Set	VGG-Face		Lightened CNN
	FC6	FC7	
Sunglasses Session 1	33.64	35.45	5.45 (A)
Scarf Session 1	86.36	89.09	12.73 (A)
Sunglasses Session 2	29.09	28.18	7.27 (B)
Scarf Session 2	85.45	83.64	10.00 (A)

Experiments on CMU PIE Database

- Facial images from 68 subjects
- **Training:** One frontally illuminated face per subject → 68 images
- Testing: 20 images with varying illumination per subject → 1360 images

	VGG-Face		Lightened CNN
	FC6	FC7	
Accuracy	93.16	92.87	20.51 (A)

Experiments on Extended Yale B

- Facial images of 38 subjects under 64 illumination variations
- **Training:** Subset 1 with the lighting angles $<12^{\circ} \rightarrow 266$ images
- Testing: Subset 2 (20°-25°), subset 3 (35°-50°), subset 4 (60°-77°), subset 5 with angles > 77°
- Pre-processing subsets 4 and 5

Testing Set	VGG-Face		Lightened CNN
	FC6	FC7	
Subset 2	100	100	82.43 (A)
Subset 3	88.38	92.32	18.42 (B)
Subset 4	46.62	52.44	8.46 (B)
Subset 5	13.85	18.28	4.29 (B)
Preprocessed Subset 4	71.80	75.56	26.32 (A)
Preprocessed Subset 5	73.82	76.32	24.93 (A)

Experiments on FERET Database

- Facial images of 994 subjects with 13 different poses
- **Training:** Regular frontal image set → 994 images
- **Testing:** Quarter left and quarter right (22.5°), half left and half right (67.5°), profile left and profile right poses (90°)

Testing Set	VGG-Face		Lightened CNN
	FC6	FC7	
Quarter Left	97.63	96.71	25.76 (A)
Quarter Right	98.42	98.16	26.02 (A)
Half Left	88.32	87.85	6.08 (B)
Half Right	91.74	87.85	5.98 (A)
Profile Left	40.63	43.60	0.76 (B)
Profile Right	43.95	44.53	1.10 (B)

Experiments on FRGC Database

- Frontal faces in controlled and uncontrolled environments and two sessions
- Training: Fall 2003 subsets
- Testing: Spring 2004 subsets

Experiments with Facial Bounding Box Extension

• All images are aligned and cropped into an extended facial patch to include all parts of the head (ears, hair, and chain)

Training Set	Testing Set	VGG-Face (FC6)	Previous
AR Neutral Set 1	AR Sunglasses Set 1	44.55	33.64
AR Neutral Set 1	AR Scarf Set 1	93.64	86.36
AR Neutral Set 1	AR Sunglasses Set 2	39.09	29.09
AR Neutral Set 1	AR Scarf Set 2	91.82	85.45
CMU PIE Train	CMU PIE Test	97.72	93.16
Ext. Yale Set 1	Ext. Yale Set 2	100	100
Ext. Yale Set 1	Ext. Yale Set 3	94.52	88.38
Ext. Yale Set 1	Ext. Yale Set 4	56.58	46.62
Ext. Yale Set 1	Ext. Yale Set 5	27.56	13.85

Conclusion

- A comprehensive evaluation of deep representations under various conditions: pose, illumination, occlusion, and misalignment
- Deep representations are not able to achieve state-of-the-art results against pose, illumination, and occlusion. Such variations should be taken into account during training or preprocessing methods should be employed along with pre-trained models
- Deep representations are robust to misalignment. Facial feature localization errors of up to 10% of the interocular distance are tolerated
- The VGG-Face model is shown to be more transferable compared to the Lightened CNN model

Thank You!

Hazım Kemal Ekenel ekenel@itu.edu.tr