
Real-Time Face Identification
via CNN

and Boosted Hashing Forest

Yury Vizilter, Vladimir Gorbatsevich, Andrey Vorotnikov and Nikita Kostromov
State Research Institute of Aviation Systems (GosNIIAS), Moscow, Russia

viz@gosniias.ru, gvs@gosniias.ru, vorotnikov@gosniias.ru, nikita-kostromov@yandex.ru

IEEE Computer Society Workshop on Biometrics
In conjunction with CVPR 2016, June 26, 2016

mailto:viz@gosniias.ru
mailto:gvs@gosniias.ru
mailto:vorotnikov@gosniias.ru
mailto:nikita-kostromov@yandex.ru
mailto:nikita-kostromov@yandex.ru
mailto:nikita-kostromov@yandex.ru

MOTIVATION: real-time face identification
• Real-time means smallest templates and fastest search 
 binary templates with Hamming distance;
• State-of-the-art recognition rates 
 convolutional neural networks (CNN) with non-binary output
 features compared by better metrics (L2, cosine, etc.).

Various applications  different requirements to:
 template size,  template generation speed,
 template matching speed,  recognition rate.

Our purpose: construct the family of face representations, which
continuously varies from “compact & fast” to “large & powerful”…

…with the same engine.

Is it possible?

MAIN IDEA: Convolutional Network with Hashing Forrest (CNHF)

CNHF = CNN + Hashing Transform based on Hashing Forest (HF)

(Depth of trees  Coded metrics  Coding objective) = Family of face
representations based on the same CNN.

*In case of 1-bit coding “trees” and Hamming distance CNHF provides the
Hamming embedding.

CNN Top Hidden Layer

Objective Feature
Space with given
Objective metrics

Coding Transform

RELATED WORK

Related work topics:

• CNN for face recognition

• learning approach

• face representation

• matching metrics

• Binary Hashing and Hamming Embedding

• Convolutional Networks + Binary Hashing

• Forest Hashing and Boosted Forest

RELATED WORK: CNN for face recognition

CNN learning approaches:
 learn CNN for multi-class face identification with classes corresponding to persons

Y. Taigman at al., “DeepFace: closing the gap to human-level performance in face verification,” 2014.

E. Zhou at al., “Naive-deep face recognition: Touching the limit of LFW benchmark or not?” 2015.

 learn the similarity metrics by training two identical CNNs (Siamese Architecture)
H. Fan at al., “Learning deep face representation,” 2014.

W. Wang at al., “Face recognition based on deep learning,” 2015.

 combine these approaches
Y. Sun at al., “Deep learning face representation by joint identification-verification,” 2014.

Y. Sun at al., “DeepID3: Face recognition with very deep neural networks,” 2015.

Face representation:
 output of the (top) hidden layer:

RELATED WORK: CNN for face recognition

Matching metrics:

 L1-distance/Hamming distance

 L2-distance
D. Chen at al., “Blessing of dimensionality: High-dimensional feature and its efficient compression for

face verification,” 2013.

W. Wang at al., “Face recognition based on deep learning,” 2015.

 cosine similarity
Y. Sun at al., “Deep learning face representation by joint identification-verification,” 2014.

Y. Taigman at al., “DeepFace: closing the gap to human-level performance in face verification,” 2014.

X. Wu, “Learning robust deep face representation,” 2015.

 other

? =

H. Fan, M. Yang, Z. Cao, Y. Jiang and Q. Yin, “Learning Compact Face Representation:

Packing a Face into an int32,” Proc. ACM Int. Conf. Multimedia, pp. 933-936, 2014.

Our approach:

• any given metrics (including Hamming distance and special metrics for forest

of binary trees matching)

RELATED WORK: CNN for face recognition

CNN architectures:

 multi-patch deep nets for different parts of face (state-of-the-art rates!)
J. Liu at al., “Targeting ultimate accuracy: face recognition via deep embedding,” 2015.

Y. Sun at al., “Deep learning face representation by joint identification-verification,” 2014.

Y. Sun at al., “DeepID3: Face recognition with very deep neural networks,” 2015.

 single nets (can be efficient enough with essentially lower computational cost)
Z. Cao at al., “Face Recognition with Learning-based Descriptor” 2010.

Omkar M. Parkhi at al., “Deep Face Recognition”, 2015

 Max-Feature-Map (MFM) architecture
X. Wu, “Learning robust deep face representation,” 2015.

Our architecture: (based on the MFM architecture)

 learning the basic single CNN with Max-Feature-Map (MFM) architecture

 transforming the layers of learned CNN to the multiple convolution architecture

for real-time implementation

RELATED WORK: Binary Hashing and Hamming Embedding

Binary hashing techniques:
A. Gionis at al., “Similarity search in high dimensions via

hashing,” 1999.

Y. Gong at al., “Iterative quantization: A procrustean

approach to learning binary codes for large-scale image

retrieval,” 2012.

K. He at al., “K-means Hashing: An affinity-preserving

quantization method for learning binary compact codes,” 2013.

W. Liu at al., “Supervised hashing with kernels,” 2012.

Manifold hashing techniques:
 Spectral Hashing

Y. Weiss at al., “Spectral Hashing,” 2008.
 Topology Preserving Hashing (TPH)

L. Zhang at al., “Topology preserving hashing

for similarity search,” 2013.

 Locally Linear Hashing (LLH)
G. Irie at al., “Locally linear hashing for

extracting non-linear manifolds,” 2014.

ITQ

TPH

LLH *Figures are taken
 from cited papers!

RELATED WORK: Binary Hashing and Hamming Embedding

Closest approaches:

 Restricted Boltzmann

Machines (RBM)
R. Salakhutdinov and G. Hinton,

“Semantic hashing,” 2009.

 Boosted Similarity Sensitive

Coding (Boosted SSC)
G. Shakhnarovich, “Learning task-specific

similarity,” 2005.

G. Shakhnarovich at al., “Fast pose estimation

with parameter sensitive hashing,” 2003.

Our approach:

 Boosted Hashing Forest (generalization of Boosted SSC):
 boosting the hashing forest in the manner of Boosted SSC;

 induction of any given metrics in the coded feature space;

 optimizing any given task-specific objective function.

RBM

RELATED WORK: Binary Hashing via Convolutional Networks

Closest approach:
 binary face coding via CNN with hashing layer (CNHL)

 learning CNN and hashing layer together via back propagation technique

H. Fan, M. Yang, Z. Cao, Y. Jiang and Q. Yin, “Learning Compact Face

Representation: Packing a Face into an int32,” Proc. ACM Int. Conf. Multimedia,

pp. 933-936, 2014.

Great result: 32-bit binary face representation provides 91% verification on LFW!

Problems:
 results for larger templates are too far from state-of-the-art;

 direct optimization of more complex face coding criterions is not available;

 we cannot perform the learning if CNHF via back propagation.

Our approach:
 binary face coding via CNN with hashing transform

 go back to the two-step learning procedure:

 learn basic CNN first,

 learn hashing transform second.

RELATED WORK: Forest Hashing and Boosted Forest

Previous Forest Hashing techniques (non-boosted):
 random forest semantic hashing scheme with information-

theoretic code aggregation
Q. Qiu at al., “Random Forests Can Hash,” 2014.

 feature induction based on random forest for learning

regression and multi-label classification
C. Vens and F. Costa, “Random Forest Based Feature Induction”,

 2011.
 forest hashing with special order-sensitive Hamming distance

G. Yu and J. Yuan, “Scalable forest hashing for fast similarity search”,

 2014.
 combination of kd-trees with hashing technique

J. Springer at al., “Forest hashing: Expediting large scale image

retrieval,” 2013.

Previous Boosted Forest approach:
 Boosted Random Forest (out of the binary hashing topic)

Y. Mishina at al., “Boosted Random Forest,” 2015.

Our approach:
 Boosted Hashing Forest (generalization of Boosted SSC):

 metric feature space induction via forest hashing;

 hashing forest boosting in the manner of Boosted SSC;

 optimizing the biometric-specific objective function.

SUMMARY OF INTRODUCTION
Contributions of this paper:

(1) The family of real-time face representations based on multiple

convolution CNN with hashing forest (CNHF);

(2) New biometric-specific objective function for joint optimization of

face verification and identification;

(3) Boosted Hashing Forest (BHF) technique for optimized feature

induction with generic form of coding objective, coded feature space and

hashing function.

Content of presentation reminder:

 Architecture and learning of CNHF with

multiple convolution layers;

 Boosted Hashing Forest technique and

its implementation for face coding;

 Experimental results on LFW

 Conclusion and discussion

CNHF: basic single net with MFM architecture

Original Max-Feature-Map (MFM) architecture:

 Max-Feature-Map instead of ReLU activation function

 4 convolutional layers

 4 layers of pooling + MFM pooling

 1 fully connected layer

 1 sofmax layer

X. Wu, “Learning robust deep face representation,” 2015.

CNHF: basic CNN + Hashing Forest (HF)

1 coding tree  1 coded feature

Hashing forest  Objective feature space with Objective metrics

(Depth of trees  Objective metrics  Objective function) =

= Family of face representations*
*1-bit coding “trees” + Hamming distance = CNHL for Hamming embedding

CNHF: forming and learning
Two-step CNHF learning scheme:

 learn basic CNN for multi-class face identification;

 learn hashing transform for joint face verification and identification.

CNHF forming and learning (more details about CNN

implementation):

1. learn the source CNN for multi-class face identification with classes

corresponding to persons via back-propagation;

2. transform CNN to the multiple convolution architecture via

substitution of each convolutional layer by the superposition of

some (2-4) simpler convolutional layers (decreasing the number of

multiplication operations);

3. train again the transformed CNN for multi-class face identification

via back-propagation;

4. replace the output soft-max layer of transformed CNN by

hashing forest and train the hashing forest.

Steps 2&3: Multiple convolution CNN transformation

Idea: Replace big convolutional filters by sequences of small filters and 1x1xN filters

128

5

5 3

3

64

3

3

64

1

1

128

Input and output dimensions are equal

Transformed layer relearning by back propagation:

Reference layer

Multiconv layer

Input

Reference signal

Euclidean loss
Error

Fast relearning (small layer sizes)!
No need to relearn all network!

Finally: fine tune the whole network after replacing all convolutional layers

CNHF: multiple convolution architecture and performance

Our CNHF architecture:

 Max-Feature-Map instead of ReLU activation function

 10 convolutional layers

 4 layers of pooling + MFM pooling

 1 fully connected layer

 hashing forest

CNHF performance:

 40+ fps with CPU Core i7 (real-time without GPU)

 120+ fps with GPU GeForce GTX 650

5 times faster!

FACE CODING: Boosted Hashing Forest (BHF)

Boosted Hashing Forest (BHF):

 algorithmic structure of Boosted SSC;

 binary code structure of Forest Hashing;

 support of any objective metrics and objective functions

Original Boosted SSC

 optimizes the performance of L1 distance in the

embedding space

 as a proxy for the pairwise similarity function,

 which is conveyed by a set of examples of positive

(similar) and negative (dissimilar) pairs.

FACE CODING: Boosted Hashing Forest (BHF)
Main parts of original Boosted SSC:

 SSC algorithm takes pairs labeled by similarity and produces a binary

embedding space.

o The embedding is learned by independent collecting thresholded

projections of the input data.

o The threshold is selected by optimal splitting the projections of

negative pairs and non-splitting the projections of positive pairs.

 Boosted SSC algorithm collects the embedding dimensions greedily

with adaptive weighting of samples and features like in AdaBoost.

 BoostPro algorithm uses a soft thresholding for gradient-based

learning of projections.

*Figure from
G. Shakhnarovich, “Learning task-specific similarity,” 2005.

FACE CODING: Boosted Hashing Forest (BHF)

Proposed BHF w.r.t. original Boosted SSC:

 Original Boosted SSC Proposed BHF

output features binary features binary coded non-binary features

data coding structure binary hashing vector hashing forest of binary trees

objective function pairwise similarity function any given objective function

boosting algorithm iterative binary vector growing by

adding thresholded projections

iterative hashing forest growing

with recursive growing of each tree

by adding thresholded projections

learning data

projections

gradient-based optimization objective-driven RANSAC search

adaptive reweighting

of training pairs

AdaBoost-style reweighting directly based on the contribution of

this pair to the objective function

output metric space

(matching metrics)

weighted Hamming space any given metric space (including

Hamming space, if required)

Our BHF implementation for face coding:
 new biometric-specific objective function with joint optimization of face

verification and identification;

 selection and processing of subvectors of the input feature vector;

 creation of ensemble of output hash codes for overcoming the limitations of

greedy learning.

BHF details: Objective-driven Recurrent Coding

Training set: X= {xiRm}i=1,…,N (N objects described by m-

dimensional feature space).

Mapping X to the n-dimensional binary space (n-bit coder):

h(n)(x): xRm  b{0,1}n

Elementary coder (1-bit hashing function):

h(x): xRm  b{0,1},h(n)(x) = (h(1)(x),…,h(n)(x)).

Objective function to be minimized via learning:

J(X,h(n))  min(h(n)).

Formal statement

BHF details: Objective-driven Recurrent Coding

Greedy Objective-driven Recurrent Coding (Greedy ORC) algorithm

sequentially forms the bits of coder in a recurrent manner (Algorithm 1)

Algorithm 1: Greedy ORC

Input data: X, J, nORC.

Output data:

 h(x): xR
m
  y{0,1}

nORC, h(x)H.

Initialization:

Step 0. k:=0; h
(k)

 := ().

Repeat iterations:

k:= k+1;

Learn k-th elementary coder:

h
(k)

(x, h
(k-1)

):= Learn1BitHash(J, X, h
(k-1)

);

Add k-th elementary coder to the

hashing function:

h
(k)

(x) := (h
(k-1)

(x), h
(k)

(x, h
(k-1)

));

// concatenation

while k<nORC. // stop if the given size is got

=

1

BHF details: Objective-driven Recurrent Coding

Greedy Objective-driven Recurrent Coding (Greedy ORC) algorithm

sequentially forms the bits of coder in a recurrent manner (Algorithm 1)

Algorithm 1: Greedy ORC

Input data: X, J, nORC.

Output data:

 h(x): xR
m
  y{0,1}

nORC, h(x)H.

Initialization:

Step 0. k:=0; h
(k)

 := ().

Repeat iterations:

k:= k+1;

Learn k-th elementary coder:

h
(k)

(x, h
(k-1)

):= Learn1BitHash(J, X, h
(k-1)

);

Add k-th elementary coder to the

hashing function:

h
(k)

(x) := (h
(k-1)

(x), h
(k)

(x, h
(k-1)

));

// concatenation

while k<nORC. // stop if the given size is got

=

+

10

BHF details: Objective-driven Recurrent Coding

Greedy Objective-driven Recurrent Coding (Greedy ORC) algorithm

sequentially forms the bits of coder in a recurrent manner (Algorithm 1)

Algorithm 1: Greedy ORC

Input data: X, J, nORC.

Output data:

 h(x): xR
m
  y{0,1}

nORC, h(x)H.

Initialization:

Step 0. k:=0; h
(k)

 := ().

Repeat iterations:

k:= k+1;

Learn k-th elementary coder:

h
(k)

(x, h
(k-1)

):= Learn1BitHash(J, X, h
(k-1)

);

Add k-th elementary coder to the

hashing function:

h
(k)

(x) := (h
(k-1)

(x), h
(k)

(x, h
(k-1)

));

// concatenation

while k<nORC. // stop if the given size is got

=

+

+

101

BHF details: Objective-driven Recurrent Coding

Greedy Objective-driven Recurrent Coding (Greedy ORC) algorithm

sequentially forms the bits of coder in a recurrent manner (Algorithm 1)

Algorithm 1: Greedy ORC

Input data: X, J, nORC.

Output data:

 h(x): xR
m
  y{0,1}

nORC, h(x)H.

Initialization:

Step 0. k:=0; h
(k)

 := ().

Repeat iterations:

k:= k+1;

Learn k-th elementary coder:

h
(k)

(x, h
(k-1)

):= Learn1BitHash(J, X, h
(k-1)

);

Add k-th elementary coder to the

hashing function:

h
(k)

(x) := (h
(k-1)

(x), h
(k)

(x, h
(k-1)

));

// concatenation

while k<nORC. // stop if the given size is got

=

+

+

+ 1011…

BHF details: Learning elementary linear classifier
 via RANSAC algorithm

At the k-th step of coder growing we select the k-th elementary coder

J(X,h
(k)

) = J(X,h
(k-1)

,h
(k)

)  min{h
(k)

  H},

Let H is a class of binary linear classifiers of the form

h(w, t, x) = sgn(k=1,…,m wk xk + t),

where w – vector of weights, t – threshold of hashing function,

sgn(u) = {1, if u > 0; 0 - otherwise}.

In this case objective function depends on w and t only:

J(X,h
(k-1)

,h
(k)

) = J(X, h
(k-1)

, w, t)  min{wR
m
, tR}.

We use RANSAC for finding the projection w and threshold t, which

approximately minimizes the objective function.

Formal statement

BHF details: Learning elementary linear classifier
 via RANSAC algorithm

Projection determination:

 Iterative random selection of dissimilar pairs in a training set as vectors

of hyperplane direction and searching for corresponding optimal threshold;

 taking the projection and threshold, which provide the best value of objective

function.

Algorithm 2: RANSAC Learn1ProjectionHash

Input data: J, X, h
(k-1)

, kRANSAC.

Output data: h(w, t, x).

Initialization:

Step 0. k:=0; Jmax:=-.

Repeat iterations:

k:= k+1;

Step 1. Take the random dissimilar pair (xi ,xj) in X.

Step 2. Get vector (xi,xj) as a vector of hyperplane direction: wk:=xj – xi.

Step 3. Calculate the threshold tk minimizing J (6) by t with w=wk:

tk:=argmint J(X, h
(k-1)

, wk, t).

Step 4. If J(X, h
(k-1)

, wk, tk) > Jmax, then

 Jmax:= J(X, h
(k-1)

, wk, tk); w:= wk; t:= tk.

while k<kRANSAC. // stop if the given number of RANSAC iterations is achieved

BHF details: Learning elementary linear classifier
 via RANSAC algorithm

Projection determination:

 Iterative random selection of dissimilar pairs in a training set as vectors

of hyperplane direction and searching for corresponding optimal threshold;

 taking the projection and threshold, which provide the best value of objective

function.

Algorithm 2: RANSAC Learn1ProjectionHash

Input data: J, X, h
(k-1)

, kRANSAC.

Output data: h(w, t, x).

Initialization:

Step 0. k:=0; Jmax:=-.

Repeat iterations:

k:= k+1;

Step 1. Take the random dissimilar pair (xi ,xj) in X.

Step 2. Get vector (xi,xj) as a vector of hyperplane direction: wk:=xj – xi.

Step 3. Calculate the threshold tk minimizing J (6) by t with w=wk:

tk:=argmint J(X, h
(k-1)

, wk, t).

Step 4. If J(X, h
(k-1)

, wk, tk) > Jmax, then

 Jmax:= J(X, h
(k-1)

, wk, tk); w:= wk; t:= tk.

while k<kRANSAC. // stop if the given number of RANSAC iterations is achieved

BHF details: Learning elementary linear classifier
 via RANSAC algorithm

Projection determination:

 Iterative random selection of dissimilar pairs in a training set as vectors

of hyperplane direction and searching for corresponding optimal threshold;

 taking the projection and threshold, which provide the best value of objective

function.

Algorithm 2: RANSAC Learn1ProjectionHash

Input data: J, X, h
(k-1)

, kRANSAC.

Output data: h(w, t, x).

Initialization:

Step 0. k:=0; Jmax:=-.

Repeat iterations:

k:= k+1;

Step 1. Take the random dissimilar pair (xi ,xj) in X.

Step 2. Get vector (xi,xj) as a vector of hyperplane direction: wk:=xj – xi.

Step 3. Calculate the threshold tk minimizing J (6) by t with w=wk:

tk:=argmint J(X, h
(k-1)

, wk, t).

Step 4. If J(X, h
(k-1)

, wk, tk) > Jmax, then

 Jmax:= J(X, h
(k-1)

, wk, tk); w:= wk; t:= tk.

while k<kRANSAC. // stop if the given number of RANSAC iterations is achieved

BHF details: Learning elementary linear classifier
 via RANSAC algorithm

Projection determination:

 random selection of dissimilar pairs in a training set as a vector of hyperplane

direction.

Threshold determination:

 The idea of Boosted SSC “ThresholdRate” algorithm is implemented for direct

optimization of the global objective function:

*Figure from G. Shakhnarovich, “Learning task-specific similarity,” 2005.

• Sort projections of objects of training set onto the current projection direction w

• For each t accumulate penalties for separated similar and non-separated dissimilar pairs

BHF details: Recursive coding and Trees of coders

Consider the tessellation of X by n-bit coder:

XB = {Xb, b{0,1}
n
}, Xb = {xX: h(x)=b}, X = b{0,1}n X b.

Recursive coding is a dichotomy of training set with finding the optimized

elementary coder for each subset at each level of tessellation:

 1 bit 2 bits 3 bits 4 bits…

Elementary recursive coder for k-th bit:

h
(k)

(x, h
(k-1)

) = h(w(h
(k-1)

(x)), t(h
(k-1)

(x)), x),

h
(k)

(x, h
(k-1)

) = Learn1BitHash(J, X, h
(k-1)

) =

= {Learn1ProjectionHash(J, X(h
(k-1)

,b), h
(k-1)

), b{0,1}
(k-1)

}.

//set of 2
(k-1)

 thresholded projections formed by RANSAC

Tree of binary coders: recursive n-bit coder h
(n)

(x).

BHF details: Recursive coding and Trees of coders

Consider the tessellation of X by n-bit coder:

XB = {Xb, b{0,1}
n
}, Xb = {xX: h(x)=b}, X = b{0,1}n X b.

Recursive coding is a dichotomy of training set with finding the optimized

elementary coder for each subset at each level of tessellation:

 1 bit 2 bits 3 bits 4 bits…

Elementary recursive coder for k-th bit:

h
(k)

(x, h
(k-1)

) = h(w(h
(k-1)

(x)), t(h
(k-1)

(x)), x),

h
(k)

(x, h
(k-1)

) = Learn1BitHash(J, X, h
(k-1)

) =

= {Learn1ProjectionHash(J, X(h
(k-1)

,b), h
(k-1)

), b{0,1}
(k-1)

}.

//set of 2
(k-1)

 thresholded projections formed by RANSAC

Tree of binary coders: recursive n-bit coder h
(n)

(x).

BHF details: Recursive coding and Trees of coders

Consider the tessellation of X by n-bit coder:

XB = {Xb, b{0,1}
n
}, Xb = {xX: h(x)=b}, X = b{0,1}n X b.

Recursive coding is a dichotomy of training set with finding the optimized

elementary coder for each subset at each level of tessellation:

 1 bit 2 bits 3 bits 4 bits…

Elementary recursive coder for k-th bit:

h
(k)

(x, h
(k-1)

) = h(w(h
(k-1)

(x)), t(h
(k-1)

(x)), x),

h
(k)

(x, h
(k-1)

) = Learn1BitHash(J, X, h
(k-1)

) =

= {Learn1ProjectionHash(J, X(h
(k-1)

,b), h
(k-1)

), b{0,1}
(k-1)

}.

//set of 2
(k-1)

 thresholded projections formed by RANSAC

Tree of binary coders: recursive n-bit coder h
(n)

(x).

BHF details: Recursive coding and Trees of coders

Consider the tessellation of X by n-bit coder:

XB = {Xb, b{0,1}
n
}, Xb = {xX: h(x)=b}, X = b{0,1}n X b.

Recursive coding is a dichotomic splitting of training set with finding the optimized

elementary coder for each subset at each level of tessellation:

 1 bit 2 bits 3 bits 4 bits…

Elementary recursive coder for k-th bit:

h
(k)

(x, h
(k-1)

) = h(w(h
(k-1)

(x)), t(h
(k-1)

(x)), x),

h
(k)

(x, h
(k-1)

) = Learn1BitHash(J, X, h
(k-1)

) =

= {Learn1ProjectionHash(J, X(h
(k-1)

,b), h
(k-1)

), b{0,1}
(k-1)

}.

//set of 2
(k-1)

 thresholded projections formed by RANSAC

Tree of binary coders: recursive n-bit coder h
(n)

(x).

BHF details: Boosted Hashing Forest
Boosted Hashing Forest (BHF) is formed via the boosting of hashing trees with

optimization of joint objective function for all trees (Algorithm 3).

Algorithm 3: Boosted Hashing Forest

Input data: X, J, nORC, nBHF.

Output data: h(x): xR
m
  y{0,1}

n
.

Initialization:

l:=0; h
[1,0]

:= ().

Repeat iterations:

l:= l+1;
Form the objective as a function of l-th coding tree:

J[l]
(X, h

[l,l]
) = J(X, h

[1,l-1]
, h

[l,l]
);

Learn l-th coding tree:

h
[l,l]

 := GreedyORC(J[l]
, X, nORC);

Add l-th coding tree to the hashing forest:

h
[1,l]

(x) := (h
[1,l-1]

(x), h
[l,l]

(x));

while l<nORC. // stop if the given size of coder is got

BHF parameters and notation:
nORC = p is a depth of coding tree; nBHF = n/p is a number of trees;

h
[1,l]

 = (h
(1)

(x),…,h
(lp)

(x)), h
[1,l-1]

 = (h
(1)

(x),…,h
(lp-p)

(x)), h
[l,l]

 = (h
(lp-p+1)

(x),…,h
(lp)

(x)).

BHF details: Boosted Hashing Forest
Boosted Hashing Forest (BHF) is formed via the boosting of hashing trees with

optimization of joint objective function for all trees (Algorithm 3).

Algorithm 3: Boosted Hashing Forest

Input data: X, J, nORC, nBHF.

Output data: h(x): xR
m
  y{0,1}

n
.

Initialization:

l:=0; h
[1,0]

:= ().

Repeat iterations:

l:= l+1;
Form the objective as a function of l-th coding tree:

J[l]
(X, h

[l,l]
) = J(X, h

[1,l-1]
, h

[l,l]
);

Learn l-th coding tree:

h
[l,l]

 := GreedyORC(J[l]
, X, nORC);

Add l-th coding tree to the hashing forest:

h
[1,l]

(x) := (h
[1,l-1]

(x), h
[l,l]

(x));

while l<nORC. // stop if the given size of coder is got

BHF parameters and notation:
nORC = p is a depth of coding tree; nBHF = n/p is a number of trees;

h
[1,l]

 = (h
(1)

(x),…,h
(lp)

(x)), h
[1,l-1]

 = (h
(1)

(x),…,h
(lp-p)

(x)), h
[l,l]

 = (h
(lp-p+1)

(x),…,h
(lp)

(x)).

+

BHF details: Boosted Hashing Forest
Boosted Hashing Forest (BHF) is formed via the boosting of hashing trees with

optimization of joint objective function for all trees (Algorithm 3).

Algorithm 3: Boosted Hashing Forest

Input data: X, J, nORC, nBHF.

Output data: h(x): xR
m
  y{0,1}

n
.

Initialization:

l:=0; h
[1,0]

:= ().

Repeat iterations:

l:= l+1;
Form the objective as a function of l-th coding tree:

J[l]
(X, h

[l,l]
) = J(X, h

[1,l-1]
, h

[l,l]
);

Learn l-th coding tree:

h
[l,l]

 := GreedyORC(J[l]
, X, nORC);

Add l-th coding tree to the hashing forest:

h
[1,l]

(x) := (h
[1,l-1]

(x), h
[l,l]

(x));

while l<nORC. // stop if the given size of coder is got

BHF parameters and notation:
nORC = p is a depth of coding tree; nBHF = n/p is a number of trees;

h
[1,l]

 = (h
(1)

(x),…,h
(lp)

(x)), h
[1,l-1]

 = (h
(1)

(x),…,h
(lp-p)

(x)), h
[l,l]

 = (h
(lp-p+1)

(x),…,h
(lp)

(x)).

+

+

BHF details: Boosted Hashing Forest
Boosted Hashing Forest (BHF) is formed via the boosting of hashing trees with

optimization of joint objective function for all trees (Algorithm 3).

Algorithm 3: Boosted Hashing Forest

Input data: X, J, nORC, nBHF.

Output data: h(x): xR
m
  y{0,1}

n
.

Initialization:

l:=0; h
[1,0]

:= ().

Repeat iterations:

l:= l+1;
Form the objective as a function of l-th coding tree:

J[l]
(X, h

[l,l]
) = J(X, h

[1,l-1]
, h

[l,l]
);

Learn l-th coding tree:

h
[l,l]

 := GreedyORC(J[l]
, X, nORC);

Add l-th coding tree to the hashing forest:

h
[1,l]

(x) := (h
[1,l-1]

(x), h
[l,l]

(x));

while l<nORC. // stop if the given size of coder is got

BHF parameters and notation:
nORC = p is a depth of coding tree; nBHF = n/p is a number of trees;

h
[1,l]

 = (h
(1)

(x),…,h
(lp)

(x)), h
[1,l-1]

 = (h
(1)

(x),…,h
(lp-p)

(x)), h
[l,l]

 = (h
(lp-p+1)

(x),…,h
(lp)

(x)).

+

+

+

BHF details: Coding metric space

Metric space (Y, dY: YY R
+
) is n-bit binary coded, if

 the each yY corresponds to unique b{0,1}
n
,

 two decoding functions are given:

 feature decoder fy(b): {0,1}
n
  Y

 distance decoder fd(b1,b2): {0,1}
n
{0,1}

n
  R

+
,

fd(b1,b2) = dY(fy(b1), fy(b2)).

Metric space coding:

 optimization of Distance-based objective function (DBOF)

J(X,h)  min(h)  J(DY)  min(DY),

 (7)

DY ={dij = fd(h(xi), h(xj)), xi,xjX, h(x)H}i,j=1,…,N.

Such objective function depends on the set of coded distances

dij only.

BHF implementation: Forest code matching
via Sum of Search Index Distances

We match tree codes via Search Index Distance (SID) – geodesic distance between binary

codes as corresponding leaves on the coding tree:

dT(y1,y2) = fdT(b1,b2) = 2  k=1,…,p (1 –  l=1,…,k (1 – |b1
(l)

 – b2
(l)

|)).

Example. Let p=4, b1 = (1,0,1,1) and b2 = (1,0,0,1).

Corresponding vertices on the coding tree are marked as blue (b1), red (b2) and purple (joint):

 root

 0 1

 0 1 0 1

 0 1 0 1 0 1 0 1

 0 1 01 01 01 0 1 0 1 0 1 0 1
The distance between blue and red leaves is 4 (2 levels up + 2 levels down):
dT((1,0,1,1),(1,0,0,1)) = 2 (1 – (1 – 0) +

 1 – (1 – 0)(1 – 0) +

 1 – (1 – 0)(1 – 0) (1 – 1) +

 1 – (1 – 0)(1 – 0) (1 – 1)(1 – 1)) = 2 (0 + 0 + 1 + 1) = 4.

End of example.

Finally, we match forest codes via Sum of Search Index Distances (SSID) between trees:

dij =  l=1,…,q fdT(h
[l,l]

(xi), h
[l,l]

(xj)).

BHF implementation: Forest code matching
via Sum of Search Index Distances

We match tree codes via Search Index Distance (SID) – geodesic distance between binary

codes as corresponding leaves on the coding tree:

dT(y1,y2) = fdT(b1,b2) = 2  k=1,…,p (1 –  l=1,…,k (1 – |b1
(l)

 – b2
(l)

|)).

Example. Let p=4, b1 = (1,0,1,1) and b2 = (1,0,0,1).

Corresponding vertices on the coding tree are marked as blue (b1), red (b2) and purple (joint):

 root

 0 1

 0 1 0 1

 0 1 0 1 0 1 0 1

 0 1 01 01 01 0 1 0 1 0 1 0 1
The distance between blue and red leaves is 4 (2 levels up + 2 levels down):
dT((1,0,1,1),(1,0,0,1)) = 2 (1 – (1 – 0) +

 1 – (1 – 0)(1 – 0) +

 1 – (1 – 0)(1 – 0) (1 – 1) +

 1 – (1 – 0)(1 – 0) (1 – 1)(1 – 1)) = 2 (0 + 0 + 1 + 1) = 4.

End of example.

Finally, we match forest codes via Sum of Search Index Distances (SSID) between trees:

dij =  l=1,…,q fdT(h
[l,l]

(xi), h
[l,l]

(xj)).

BHF implementation: Objective function for face verification

Similarity function s describes positive (authentic) and negative (imposter) pairs:

Goal distance for k-bit binary code:

Distance supervision objective function:

JDist(DY) = i=1,…,N j=1,…,N vij (dij – gij)
2 min(DY = {dij}i,j=1,…,N),

where vij – different weights for authentic and imposter pairs.

Such objective function controls the verification performance (FAR-FRR).

BHF implementation: Objective function for face
identification

Identification task requires controlling both distances and ordering of distances.

Let for the query h(xk):

d
1

k = maxl{dkl: skl = 1} – distance to the most far authentic;

d
0

k = minl{dkl: skl = 0} – distance to the closest imposter

Ordering error eij for a pair (xi,xj):

(occurs if imposter is closer than authentic or authentic is more far than imposter)

Distance order supervision objective function:

JOrd(DY) = i=1,…,N j=1,…,N vij (dij – gij)
2
 eijmin(DY = {dij}i,j=1,…,N).

penalizes the difference between dij and objective distance gij,

but only in case that the ordering error eij occurs for this pair.

Such objective function (12) controls the face identification characteristics (CMC).

BHF implementation: Objective function for face
verification and identification

Distance and Distance order supervision objective function:

J(DY) =  JDist(DY) + (1 – ) JOrd(DY) =

 = i=1,…,N j=1,…,N vij (dij – gij)
2
 (eij + (1 – eij)) 

 min(DY = {dij}i,j=1,…,N),

where [0,1] is a tuning parameter for balancing distance and

distance order influence.

Such objective function controls both the face verification and

face identification characteristics.

BHF implementation: semi-heuristic tricks

Modification of goal distance:

where m(k-1)
1 and (k-1)

1 are the mean value and standard

deviation of authentic coded distances.

Goal distance excludes the penalizing of imposter pairs, which

could not be treated as authentic.

For possible questions

BHF implementation: semi-heuristic tricks

We use the adaptive weighting of pairs at each k-th step of

boosting:

a(k) = i=1,…,N j=1,…,N sij (dij – gij)2 (eij + (1 – eij)),

b(k) = i=1,…,N j=1,…,N (1 –sij) (dij – gij)2 (eij + (1 – eij)),

where a(k) and b(k) provide the basic equal weight for all

authentic and imposter pairs,

and tuning parameter >1 gives the slightly larger weights to

authentic pairs.

For possible questions

BHF implementation: semi-heuristic tricks

Selection and processing of subvectors of the input feature vector:

We split the input m-dimensional feature vector to the set of

independently coded subvectors with fixed sizes from the set

m = {mmin,…,mmax}. At the each step of boosting we get the subvector

with corresponding BHF elementary coder providing the best contribution

to the objective function.

Creation of ensemble of independent hash codes:

The output binary vector of size n consists of some independently grown

parts of size nBHF<n. Such learning strategy prevents the premature

saturation of objective function.

For possible questions

BHF implementation: tuning parameters

Set of implemented BHF free parameters:

 m = {mmin,…,mmax} – set of sizes for independently coded input

subvectors;

 nORC – depth of hashing trees;

 nBHF – number of trees in the hashing forests;

 kRANSAC – number of RANSAC iterations for each projection;

  – objective function tuning parameter for balancing distance and

distance order influence;

  – tuning parameter, which gives slightly larger weights to authentic

pairs;

In general, coded metrics is a free parameter of our approach too, but in

this paper we use the Sum of Search Index Distances (SSID) only.

EXPERIMENTS

Content of experimental part

• Methodology: learning and testing CNHF;

• Hamming embedding: CNHL vs. CNN;

• Hamming embedding: BHF vs. Boosted SSC;

• Proposed BHF w.r.t. original Boosted SSC;

• CNHF performance w.r.t. depth of coding trees;

• CNHL and CNHF vs. best methods on LFW.

EXPERIMENTS: learning and testing CNHF

CNN Learning

 training dataset: CASIA-WebFace;

 face alignment:

 rotation of eye points to horizontal

position with fixed eye-to-eye distance

 crop to 128х128 size;

 training framework: open source

Caffe (http://caffe.berkeleyvision.org/);

 training technique: training for multi-class

face identification in the manner of

Y. Sun at al., “Deep learning face representation from predicting

10,000 classes,” 2014.

X. Wu, “Learning robust deep face representation,” 2015.

EXPERIMENTS: learning and testing CNHF

Hashing forest learning
 training dataset: 1000 authentic and 999000 imposter pairs of Faces in the Wild

images (not from the testing LFW set);

 formed family of CNHF coders:

 Hamming embedding coders 20001 bit (250 byte), 2001 bit (25 byte) and

321 bit (4 byte) of size;

 Hashing forest coders – 2000 trees with 2-7 bits depth (0.5 – 1.75 Kbyte of

size);

 BHF parameter settings:

 common settings for all CNHFs:

o m = {8, 16, 32}, kRANSAC = 500,  = 0.25,  = 1.1;

 individual settings for number of trees in HF

(determined experimentally based on the analysis of the speed of identification

rate growing w.r.t. number of code bits in the hashing process):

o nBHF=200 for CNN+BHF-2001,

o nBHF=500 for CNN+BHF-20001

o nBHF=100 for CNHF-20007.

EXPERIMENTS: learning and testing CNHF

CNHF and CNN evaluation

 testing dataset: Labeled Faces in the Wild (LFW);

 face alignment: all the LFW images are processed and normalized to

128х128 as in

G.-B. Huang at al., “Learning to align from scratch,” 2012;

 verification test: accuracy by the standard LFW unrestricted with

outside labeled data protocol and ROC;

 identification tests: CMC and rank-1 following the methodology

L. Best-Rowden at al., “Unconstrained face recognition: Identifying a

person of interest from a media collection,” 2014.

EXPERIMENTS: Hamming embedding*
 *CNHF degrades to CNHL

Hamming embedding: CNHL vs. CNN

 CNN face representation: vector of activations of 256 top hidden layer neurons;

 СNN matching metrics: cosine similarity (CNN+CS) and L2-distance

(CNN+L2);

 CNHL face representations: 2000 and 200 bit-coders trained by BHF

(CNN+BHF-20001 and CNN+BHF-2001);

 СNHL matching metrics: Hamming distance.

Table 1. Verification accuracy on LFW, code size and matching speed of CNN and CNHL

Solution
Accuracy

on LFW
Template

 size

Matches

 in sec

CNN+L2 0.947 8192 bit 2713222

CNN+BHF-2001 0.963 200 bit 194986071

CNN+CS 0.975 8192 bit 2787632

CNN+BHF-20001 0.9814 2000 bit 27855153

Our 200х1-bit face coder provides 40-times smaller template size and 70-times faster
matching with only 1% decreasing of accuracy relative to basic CNN (96.3% on LFW)!

EXPERIMENTS: Hamming embedding*
 *CNHF degrades to CNHL

Hamming embedding: CNHL vs. CNN

Results:

 Our solution CNN+BHF-20001 achieves 98.14% on LFW, which outperforms

all other solutions based on this CNN.

 Our 25-byte solution CNN+BHF-2001 outperforms CNN+L2.

 Table 1 additionally demonstrates the gain in template size and matching speed.

EXPERIMENTS: Hamming embedding*

 *CNHF degrades to CNHL

Hamming embedding: Proposed BHF vs. Boosted SSC

Verification: ROC

Results:

 ROC graph for CNN+BHF is monotonously better than for CNN+BoostSSC;

EXPERIMENTS: Hamming embedding*
 *CNHF degrades to CNHL

Hamming embedding: Proposed BHF vs. Boosted SSC

Identification: CMC

Results:

 ROC graph for CNN+BHF is monotonously better than for CNN+BoostSSC;

 CMC graphs (ranks 1-10) BHF outperforms BoostSSC (CNN+BHF-20001

outperforms even CNN+CS).

EXPERIMENTS: Hamming embedding*
 *CNHF degrades to CNHL

Hamming embedding: Proposed BHF vs. Boosted SSC

Identification: Rank-1

Results:

 ROC graph for CNN+BHF is monotonously better than for CNN+BoostSSC;

 CMC graphs (ranks 1-10) BHF outperforms BoostSSC (CNN+BHF-20001

outperforms even CNN+CS).

 BHF outperforms Boosted SSC in identification (rank-1) on LFW for all binary

template sizes (outperforms even CNN+CS);

 maximal rank-1 is 0.91 for BHF-20001 and 0.865 for BoostSSC-20001;

EXPERIMENTS: Hashing Forest vs. Hashing Layer
CNHF: 7-bit trees w.r.t. 1-bit Hamming embedding and CNN
CNHF with N output features coded each by M-bit coding trees = CNHF-NM

ROC (a) and CMC (b) curves for CNN+CS, CNHF-20001 and CNHF-20007.

Results:
 CNHF-20007 achieves 98.59% on LFW.

 CNHF-20007 is 93% rank-1 on LFW relative to 89.9% rank-1 for CNN+CS.

 CNHF-20007 outperforms CNHF-20001 and basic CNN+CS both in

verification (ROC) and in identification (CMC).

SUMMARY of EXPERIMENTS:
CNHF vs. CNHL, BHF vs. Bossted SSC,

CNHL two-step learning vs. one-step learning

Main conclusion: adding hashing forest on the top of CNN allows
both generating the compact binary face representations and
increasing the face verification and especially identification rates.

1) For all characteristics (accuracy, ROC, rank-1, CMC):

CNN+BHF-20007 > CNN+BHF-20001 > CNN+CS > CNN+L2

2) For all characteristics (accuracy, ROC, rank-1, CMC) and all N:

CNN+BHF1 > CNN+BoostedSSC

3) If accuracy > 96% on LFW (other characteristics are unknown) :

CNN+BHF-200х1 > CNHL-1000х1 (H. Fan at al., 2014)

(HL learned after CNN) is 5 times more compact than (HL+CNN learned together)

Notation: CNHF with N output features coded each by M-bit coding trees = CNHF-NхM

EXPERIMENTS: CNHF performance w.r.t. depth of trees

ROC curves for CNHF with different depth of coding trees:

Results:

 performance grows with growing

depth of trees;

 forest with 7-bit coding trees is the

best by ROC…

…but 5-bit depth solution is very close.

Supposed reason:

 limited amount of training set for

forest hashing.

(too small number of authentic pairs in

the each cell of space tessellation)

 1 bit 2 bits 3 bits 4 bits…

It’s a topic for further research!

EXPERIMENTS: CNHL and CNHF vs. best methods on LFW

Verification accuracy on LFW:

Method Accuracy

WebFace [25] 0.9613

CNHL-2001 0.963±0.00494

DeepFace-ensemble[21] 0.9730±0.0025

DeepID[19] 0.9745± 0.0026

MFM Net[24] 0.9777

CNHL-20001 0.9814

CNHF-20007 0.9859

DeepID2[17] 0.9915 ± 0.0013

DeepID3[18] 0.9953 ± 0.0010

Baidu[11] 0.9977 ± 0.0006

25 bytes!

250 bytes

EXPERIMENTS: CNHL and CNHF vs. best methods on LFW

CNHF identification results:

 Our CNHF-20007 result is 0.93 rank-1 on LFW (real-time single net

with hashing forest).

 Best reported* DeepID3 result is 0.96 rank-1 on LFW (essentially

deeper and slower multi-patch CNN).

*Baidu declares even better result (0.98 rank-1 on LFW), but they use the

training set 1.2 million images of size w.r.t. 400 thousand images in our

case.

CNHL verification results:

 Our CNHF-20001 outperforms DeepFace-ensemble [30], DeepID

[27], WebFace [35] and MFM Net [34].

 DeepID2 [25], DeepID3 [26] and Baidu [14] multi-patch CNNs

outperform our CNHF-20001 based on single net.

*Google’s FaceNet is formally a single net too, but it is too far

from real-time

Conclusion: Our real-time CNHF-2000 solutions outperforms
all single nets* and close enough to multi-patch nets.

CONCLUSIONS

1. We develop the family of CNN-based binary face representations

for real-time face identification:
 Our 20001-bit face coder provides the compact face coding (250 byte) with

simultaneous increasing of verification (98.14%) and identification (91% rank-1)

on LFW.

 Our 2001-bit face coder provides the 40-time gain in template size and 70-time

gain in a matching speed with 1% decreasing of verification accuracy relative to

basic CNN (96.3% on LFW).

 Our CNHF with 2000 output 7-bit coding trees (CNHF-20007) achieves 98.59%

verification accuracy and 93% rank-1 on LFW (add 3% to rank-1 of basic CNN).

2. We propose the multiple convolution deep network architecture for

acceleration of source Max-Feature-Map (MFM) CNN architecture:
 Our CNHF generates binary face templates at the rate of 40+ fps with

CPU Core i7

 Our CNHF generates binary face templates at the rate of 120+ fps with

GPU GeForce GTX 650

CONCLUSIONS

3. We propose and implement the new binary hashing technique, which

forms the output feature space with given metric properties via joint optimization of

face verification and identification.

 Our Boosted Hashing Forest (BHF) technique combines the algorithmic structure

of Boosted SSC approach and the binary code structure of forest hashing.

 Our experiments demonstrate that BHF essentially outperforms the original

Boosted SSC in face identification test.

Ideas and plans for the future:

 try to achieve the better recognition rates via CNHF based on multi-patch CNN,

which we can use for non-real-time applications.

 evolve and apply the proposed BHF technique for different data coding and

dimension reduction problems (supervised, semi-supervised and unsupervised).

 investigate the influence of the output metric space properties in the process of

hashing forest learning.

Acknowledgement

This work is supported by grant from Russian Science Foundation

(Project No. 16-11-00082).

Thank you for your attention!

Real-Time Face Identification via CNN and

Boosted Hashing Forest

Yury Vizilter, Vladimir Gorbatsevich, Andrey Vorotnikov, Nikita Kostromov

State Research Institute of Aviation Systems (GosNIIAS), Moscow, Russia

viz@gosniias.ru, gvs@gosniias.ru, vorotnikov@gosniias.ru,
nikita-kostromov@yandex.ru

EXPERIMENTS: CNHL and CNHF vs. best methods on LFW

CNHL: two-step vs. one-step learning

 32-bit binary face representation:

 Best one-step result – 91% verification on LFW
H. Fan at al., “Learning Compact Face Representation: Packing a Face into

an int32,” 2014.

 Our two-step learned CNHF 321 provides 90% only.

 96% accuracy on LFW:

 Our two-step learned CNHF-2001 (200 bit) hash demonstrates

96.3% on LFW;

 Best one-step result requires 1000 bit for achieving the 96%

verification on LFW (our CNHF-2001 solution improves this face

packing result in 5 times).

(H. Fan at al., 2014)

For possible questions

