
Real-Time Face Identification
via CNN

and Boosted Hashing Forest

Yury Vizilter, Vladimir Gorbatsevich, Andrey Vorotnikov and Nikita Kostromov
State Research Institute of Aviation Systems (GosNIIAS), Moscow, Russia
viz@gosniias.ru, gvs@gosniias.ru, vorotnikov@gosniias.ru, nikita-kostromov@yandex.ru

IEEE Computer Society Workshop on Biometrics
In conjunction with CVPR 2016, June 26, 2016

mailto:viz@gosniias.ru
mailto:gvs@gosniias.ru
mailto:vorotnikov@gosniias.ru
mailto:nikita-kostromov@yandex.ru
mailto:nikita-kostromov@yandex.ru
mailto:nikita-kostromov@yandex.ru

MOTIVATION: real-time face identification
ω Real-time means smallest templates and fastest search Ý
 binary templates with Hamming distance;
ω State-of-the-art recognition rates Ý
 convolutional neural networks (CNN) with non-binary output
 features compared by better metrics (L2, cosine, etc.).

Various applications Ý different requirements to:
¶ template size, ¶ template generation speed,
¶ template matching speed, ¶ recognition rate.

Our purpose: construct the family of face representations, which
continuously varies from άŎƻƳǇŀŎǘ ϧ Ŧŀǎǘέ ǘƻ άƭŀǊƎŜ ϧ ǇƻǿŜǊŦǳƭέΧ

ΧǿƛǘƘ ǘƘŜ ǎŀƳŜ ŜƴƎƛƴŜΦ

Is it possible?

MAIN IDEA: Convolutional Network with Hashing Forrest (CNHF)

CNHF = CNN + Hashing Transform based on Hashing Forest (HF)

(Depth of trees ³ Coded metrics ³ Coding objective) = Family of face
representations based on the same CNN.

* In case of 1-ōƛǘ ŎƻŘƛƴƎ άǘǊŜŜǎέ ŀƴŘ IŀƳƳƛƴƎ ŘƛǎǘŀƴŎŜ /bIC ǇǊƻǾƛŘŜǎ ǘƘŜ
Hamming embedding.

CNN Top Hidden Layer

Objective Feature
Space with given
Objective metrics

Coding Transform

RELATED WORK

Related work topics:

Å CNN for face recognition

Å learning approach

Å face representation

Å matching metrics

Å Binary Hashing and Hamming Embedding

Å Convolutional Networks + Binary Hashing

Å Forest Hashing and Boosted Forest

RELATED WORK: CNN for face recognition

CNN learning approaches:
¶ learn CNN for multi-class face identification with classes corresponding to persons

Y. Taigman at al., ñDeepFace: closing the gap to human-level performance in face verification,ò 2014.

E. Zhou at al., ñNaive-deep face recognition: Touching the limit of LFW benchmark or not?ò 2015.

¶ learn the similarity metrics by training two identical CNNs (Siamese Architecture)
H. Fan at al., ñLearning deep face representation,ò 2014.

W. Wang at al., ñFace recognition based on deep learning,ò 2015.

¶ combine these approaches
Y. Sun at al., ñDeep learning face representation by joint identification-verification,ò 2014.

Y. Sun at al., ñDeepID3: Face recognition with very deep neural networks,ò 2015.

Face representation:
¶ output of the (top) hidden layer:

RELATED WORK: CNN for face recognition

Matching metrics:

¶ L1-distance/Hamming distance

¶ L2-distance
D. Chen at al., ñBlessing of dimensionality: High-dimensional feature and its efficient compression for

face verification,ò 2013.

W. Wang at al., ñFace recognition based on deep learning,ò 2015.

¶ cosine similarity
Y. Sun at al., ñDeep learning face representation by joint identification-verification,ò 2014.

Y. Taigman at al., ñDeepFace: closing the gap to human-level performance in face verification,ò 2014.

X. Wu, ñLearning robust deep face representation,ò 2015.

¶ other

? =

H. Fan, M. Yang, Z. Cao, Y. Jiang and Q. Yin, ñLearning Compact Face Representation:

Packing a Face into an int32,ò Proc. ACM Int. Conf. Multimedia, pp. 933-936, 2014.

Our approach:

Åany given metrics (including Hamming distance and special metrics for forest

of binary trees matching)

RELATED WORK: CNN for face recognition

CNN architectures:

¶ multi -patch deep nets for different parts of face (state-of-the-art rates!)
J. Liu at al., ñTargeting ultimate accuracy: face recognition via deep embedding,ò 2015.

Y. Sun at al., ñDeep learning face representation by joint identification-verification,ò 2014.

Y. Sun at al., ñDeepID3: Face recognition with very deep neural networks,ò 2015.

¶ single nets (can be efficient enough with essentially lower computational cost)
Z. Cao at al., ñFace Recognition with Learning-based Descriptorò 2010.

Omkar M. Parkhi at al., ñDeep Face Recognitionò, 2015

¶ Max-Feature-Map (MFM) architecture
X. Wu, ñLearning robust deep face representation,ò 2015.

Our architecture: (based on the MFM architecture)

¶ learning the basic single CNN with Max-Feature-Map (MFM) architecture

¶ transforming the layers of learned CNN to the multiple convolution architecture

for real-time implementation

RELATED WORK: Binary Hashing and Hamming Embedding

Binary hashing techniques:
A. Gionis at al., ñSimilarity search in high dimensions via

hashing,ò 1999.

Y. Gong at al., ñIterative quantization: A procrustean

approach to learning binary codes for large-scale image

retrieval,ò 2012.

K. He at al., ñK-means Hashing: An affinity-preserving

quantization method for learning binary compact codes,ò 2013.

W. Liu at al., ñSupervised hashing with kernels,ò 2012.

Manifold hashing techniques:
¶ Spectral Hashing

Y. Weiss at al., ñSpectral Hashing,ò 2008.
¶ Topology Preserving Hashing (TPH)

L. Zhang at al., ñTopology preserving hashing

for similarity search,ò 2013.

¶ Locally Linear Hashing (LLH)
G. Irie at al., ñLocally linear hashing for

extracting non-linear manifolds,ò 2014.

ITQ

TPH

LLH *Figures are taken
 from cited papers!

RELATED WORK: Binary Hashing and Hamming Embedding

Closest approaches:

¶ Restricted Boltzmann

Machines (RBM)
R. Salakhutdinov and G. Hinton,

ñSemantic hashing,ò 2009.

¶ Boosted Similarity Sensitive

Coding (Boosted SSC)
G. Shakhnarovich, ñLearning task-specific

similarity,ò 2005.

G. Shakhnarovich at al., ñFast pose estimation

with parameter sensitive hashing,ò 2003.

Our approach:

¶ Boosted Hashing Forest (generalization of Boosted SSC):
¶ boosting the hashing forest in the manner of Boosted SSC;

¶ induction of any given metrics in the coded feature space;

¶ optimizing any given task-specific objective function.

RBM

RELATED WORK: Binary Hashing via Convolutional Networks

Closest approach:
¶ binary face coding via CNN with hashing layer (CNHL)

¶ learning CNN and hashing layer together via back propagation technique

H. Fan, M. Yang, Z. Cao, Y. Jiang and Q. Yin, ñLearning Compact Face

Representation: Packing a Face into an int32,ò Proc. ACM Int. Conf. Multimedia,

pp. 933-936, 2014.

Great result: 32-bit binary face representation provides 91% verification on LFW!

Problems:
¶ results for larger templates are too far from state-of-the-art;

¶ direct optimization of more complex face coding criterions is not available;

¶ we cannot perform the learning if CNHF via back propagation.

Our approach:
¶ binary face coding via CNN with hashing transform

¶ go back to the two-step learning procedure:

¶ learn basic CNN first,

¶ learn hashing transform second.

RELATED WORK: Forest Hashing and Boosted Forest

Previous Forest Hashing techniques (non-boosted):
¶ random forest semantic hashing scheme with information-

theoretic code aggregation
Q. Qiu at al., ñRandom Forests Can Hash,ò 2014.

¶ feature induction based on random forest for learning

regression and multi-label classification
C. Vens and F. Costa, ñRandom Forest Based Feature Inductionò,

 2011.
¶ forest hashing with special order-sensitive Hamming distance
G. Yu and J. Yuan, ñScalable forest hashing for fast similarity searchò,

 2014.
¶ combination of kd-trees with hashing technique
J. Springer at al., ñForest hashing: Expediting large scale image

retrieval,ò 2013.

Previous Boosted Forest approach:
¶ Boosted Random Forest (out of the binary hashing topic)
Y. Mishina at al., ñBoosted Random Forest,ò 2015.

Our approach:
¶ Boosted Hashing Forest (generalization of Boosted SSC):

¶ metric feature space induction via forest hashing;

¶ hashing forest boosting in the manner of Boosted SSC;

¶ optimizing the biometric-specific objective function.

SUMMARY OF INTRODUCTION
Contributions of this paper:

(1) The family of real-time face representations based on multiple

convolution CNN with hashing forest (CNHF);

(2) New biometric-specific objective function for joint optimization of

face verification and identification;

(3) Boosted Hashing Forest (BHF) technique for optimized feature

induction with generic form of coding objective, coded feature space and

hashing function.

Content of presentation reminder:

¶ Architecture and learning of CNHF with

multiple convolution layers;

¶ Boosted Hashing Forest technique and

its implementation for face coding;

¶ Experimental results on LFW

¶ Conclusion and discussion

CNHF: basic single net with MFM architecture

Original Max-Feature-Map (MFM) architecture:

¶ Max-Feature-Map instead of ReLU activation function

¶ 4 convolutional layers

¶ 4 layers of pooling + MFM pooling

¶ 1 fully connected layer

¶ 1 sofmax layer

X. Wu, ñLearning robust deep face representation,ò 2015.

CNHF: basic CNN + Hashing Forest (HF)

1 coding tree ª 1 coded feature

Hashing forest ª Objective feature space with Objective metrics

(Depth of trees ³ Objective metrics ³ Objective function) =

= Family of face representations*
*1-bit coding ñtreesò + Hamming distance = CNHL for Hamming embedding

CNHF: forming and learning
Two-step CNHF learning scheme:

¶ learn basic CNN for multi-class face identification;

¶ learn hashing transform for joint face verification and identification.

CNHF forming and learning (more details about CNN

implementation):

1. learn the source CNN for multi-class face identification with classes

corresponding to persons via back-propagation;

2. transform CNN to the multiple convolution architecture via

substitution of each convolutional layer by the superposition of

some (2-4) simpler convolutional layers (decreasing the number of

multiplication operations);

3. train again the transformed CNN for multi-class face identification

via back-propagation;

4. replace the output soft-max layer of transformed CNN by

hashing forest and train the hashing forest.

Steps 2&3: Multiple convolution CNN transformation

Idea: Replace big convolutional filters by sequences of small filters and 1x1xN filters

128

5

5 3

3

64

3

3

64

1

1

128

Input and output dimensions are equal

Transformed layer relearning by back propagation:

Reference layer

Multiconv layer

Input

Reference signal

Euclidean loss
Error

Fast relearning (small layer sizes)!
No need to relearn all network!

Finally: fine tune the whole network after replacing all convolutional layers

CNHF: multiple convolution architecture and performance

Our CNHF architecture :

¶ Max-Feature-Map instead of ReLU activation function

¶ 10 convolutional layers

¶ 4 layers of pooling + MFM pooling

¶ 1 fully connected layer

¶ hashing forest

CNHF performance:

¶ 40+ fps with CPU Core i7 (real-time without GPU)

¶ 120+ fps with GPU GeForce GTX 650

5 times faster!

FACE CODING: Boosted Hashing Forest (BHF)

Boosted Hashing Forest (BHF):

¶ algorithmic structure of Boosted SSC;

¶ binary code structure of Forest Hashing;

¶ support of any objective metrics and objective functions

Original Boosted SSC

¶ optimizes the performance of L1 distance in the

embedding space

¶ as a proxy for the pairwise similarity function,

¶ which is conveyed by a set of examples of positive

(similar) and negative (dissimilar) pairs.

FACE CODING: Boosted Hashing Forest (BHF)
Main parts of original Boosted SSC:

¶ SSC algorithm takes pairs labeled by similarity and produces a binary

embedding space.

o The embedding is learned by independent collecting thresholded

projections of the input data.

o The threshold is selected by optimal splitting the projections of

negative pairs and non-splitting the projections of positive pairs.

¶ Boosted SSC algorithm collects the embedding dimensions greedily

with adaptive weighting of samples and features like in AdaBoost.

¶ BoostPro algorithm uses a soft thresholding for gradient-based

learning of projections.

*Figure from
G. ShakhnarovichΣ ά[ŜŀǊƴƛƴƎ task-specific similarityΣέ нллр.

FACE CODING: Boosted Hashing Forest (BHF)

Proposed BHF w.r.t. original Boosted SSC:

 Original Boosted SSC Proposed BHF

output features binary features binary coded non-binary features

data coding structure binary hashing vector hashing forest of binary trees

objective function pairwise similarity function any given objective function

boosting algorithm iterative binary vector growing by

adding thresholded projections

iterative hashing forest growing

with recursive growing of each tree

by adding thresholded projections

learning data

projections

gradient-based optimization objective-driven RANSAC search

adaptive reweighting

of training pairs

AdaBoost-style reweighting directly based on the contribution of

this pair to the objective function

output metric space

(matching metrics)

weighted Hamming space any given metric space (including

Hamming space, if required)

Our BHF implementation for face coding:
¶ new biometric-specific objective function with joint optimization of face

verification and identification;

¶ selection and processing of subvectors of the input feature vector;

¶ creation of ensemble of output hash codes for overcoming the limitations of

greedy learning.

BHF details: Objective-driven Recurrent Coding

Training set: X= {xiÍRm} i=1,é,N (N objects described by m-

dimensional feature space).

Mapping X to the n-dimensional binary space (n-bit coder):

h(n)(x): xÍRm bÍ{0,1} n

Elementary coder (1-bit hashing function):

h(x): xÍRm bÍ{0,1},h(n)(x) = (h(1)(x),é,h(n)(x)).

Objective function to be minimized via learning:

J(X,h(n)) min(h(n)).

Formal statement

BHF details: Objective-driven Recurrent Coding

Greedy Objective-driven Recurrent Coding (Greedy ORC) algorithm

sequentially forms the bits of coder in a recurrent manner (Algorithm 1)

Algorithm 1: Greedy ORC

Input data: X, J, nORC.

Output data:

 h(x): xÍR
m
 yÍ{0,1}

nORC, h(x)ÍH.

Initialization :

Step 0. k:=0; h
(k)

 := ().

Repeat iterations:

k:= k+1;

Learn k-th elementary coder:

h
(k)

(x, h
(k-1)

):= Learn1BitHash(J, X, h
(k-1)

);

Add k-th elementary coder to the

hashing function:

h
(k)

(x) := (h
(k-1)

(x), h
(k)

(x, h
(k-1)

));

// concatenation

while k<nORC. // stop if the given size is got

=

1

BHF details: Objective-driven Recurrent Coding

Greedy Objective-driven Recurrent Coding (Greedy ORC) algorithm

sequentially forms the bits of coder in a recurrent manner (Algorithm 1)

Algorithm 1: Greedy ORC

Input data: X, J, nORC.

Output data:

 h(x): xÍR
m
 yÍ{0,1}

nORC, h(x)ÍH.

Initialization :

Step 0. k:=0; h
(k)

 := ().

Repeat iterations:

k:= k+1;

Learn k-th elementary coder:

h
(k)

(x, h
(k-1)

):= Learn1BitHash(J, X, h
(k-1)

);

Add k-th elementary coder to the

hashing function:

h
(k)

(x) := (h
(k-1)

(x), h
(k)

(x, h
(k-1)

));

// concatenation

while k<nORC. // stop if the given size is got

=

+

10

BHF details: Objective-driven Recurrent Coding

Greedy Objective-driven Recurrent Coding (Greedy ORC) algorithm

sequentially forms the bits of coder in a recurrent manner (Algorithm 1)

Algorithm 1: Greedy ORC

Input data: X, J, nORC.

Output data:

 h(x): xÍR
m
 yÍ{0,1}

nORC, h(x)ÍH.

Initialization :

Step 0. k:=0; h
(k)

 := ().

Repeat iterations:

k:= k+1;

Learn k-th elementary coder:

h
(k)

(x, h
(k-1)

):= Learn1BitHash(J, X, h
(k-1)

);

Add k-th elementary coder to the

hashing function:

h
(k)

(x) := (h
(k-1)

(x), h
(k)

(x, h
(k-1)

));

// concatenation

while k<nORC. // stop if the given size is got

=

+

+

101

BHF details: Objective-driven Recurrent Coding

Greedy Objective-driven Recurrent Coding (Greedy ORC) algorithm

sequentially forms the bits of coder in a recurrent manner (Algorithm 1)

Algorithm 1: Greedy ORC

Input data: X, J, nORC.

Output data:

 h(x): xÍR
m
 yÍ{0,1}

nORC, h(x)ÍH.

Initialization :

Step 0. k:=0; h
(k)

 := ().

Repeat iterations:

k:= k+1;

Learn k-th elementary coder:

h
(k)

(x, h
(k-1)

):= Learn1BitHash(J, X, h
(k-1)

);

Add k-th elementary coder to the

hashing function:

h
(k)

(x) := (h
(k-1)

(x), h
(k)

(x, h
(k-1)

));

// concatenation

while k<nORC. // stop if the given size is got

=

+

+

+ млммΧ

BHF details: Learning elementary linear classifier
 via RANSAC algorithm

At the k-th step of coder growing we select the k-th elementary coder

J(X,h
(k)

) = J(X,h
(k-1)

,h
(k)

) min{ h
(k)

 Í H},

Let H is a class of binary linear classifiers of the form

h(w, t, x) = sgn(äk=1,é,m wk xk + t),

where w ï vector of weights, t ï threshold of hashing function,

sgn(u) = {1, if u > 0; 0 - otherwise}.

In this case objective function depends on w and t only:

J(X,h
(k-1)

,h
(k)

) = J(X, h
(k-1)

, w, t) min{wÍR
m
, tÍR}.

We use RANSAC for finding the projection w and threshold t, which

approximately minimizes the objective function.

Formal statement

BHF details: Learning elementary linear classifier
 via RANSAC algorithm

Projection determination:

¶ Iterative random selection of dissimilar pairs in a training set as vectors

of hyperplane direction and searching for corresponding optimal threshold;

¶ taking the projection and threshold, which provide the best value of objective

function.

Algorithm 2: RANSAC Learn1ProjectionHash

Input data : J, X, h
(k-1)

, kRANSAC.

Output data: h(w, t, x).

Initialization :

Step 0. k:=0; Jmax:=-¤.

Repeat iterations:

k:= k+1;

Step 1. Take the random dissimilar pair (xi ,xj) in X.

Step 2. Get vector (xi,xj) as a vector of hyperplane direction: wk:=xj ï xi.

Step 3. Calculate the threshold tk minimizing J (6) by t with w=wk:

tk:=argmint J(X, h
(k-1)

, wk, t).

Step 4. If J(X, h
(k-1)

, wk, tk) > Jmax, then

 Jmax:= J(X, h
(k-1)

, wk, tk); w:= wk; t:= tk.

while k<kRANSAC. // stop if the given number of RANSAC iterations is achieved

BHF details: Learning elementary linear classifier
 via RANSAC algorithm

Projection determination:

¶ Iterative random selection of dissimilar pairs in a training set as vectors

of hyperplane direction and searching for corresponding optimal threshold;

¶ taking the projection and threshold, which provide the best value of objective

function.

Algorithm 2: RANSAC Learn1ProjectionHash

Input data : J, X, h
(k-1)

, kRANSAC.

Output data: h(w, t, x).

Initialization :

Step 0. k:=0; Jmax:=-¤.

Repeat iterations:

k:= k+1;

Step 1. Take the random dissimilar pair (xi ,xj) in X.

Step 2. Get vector (xi,xj) as a vector of hyperplane direction: wk:=xj ï xi.

Step 3. Calculate the threshold tk minimizing J (6) by t with w=wk:

tk:=argmint J(X, h
(k-1)

, wk, t).

Step 4. If J(X, h
(k-1)

, wk, tk) > Jmax, then

 Jmax:= J(X, h
(k-1)

, wk, tk); w:= wk; t:= tk.

while k<kRANSAC. // stop if the given number of RANSAC iterations is achieved

BHF details: Learning elementary linear classifier
 via RANSAC algorithm

Projection determination:

¶ Iterative random selection of dissimilar pairs in a training set as vectors

of hyperplane direction and searching for corresponding optimal threshold;

¶ taking the projection and threshold, which provide the best value of objective

function.

Algorithm 2: RANSAC Learn1ProjectionHash

Input data : J, X, h
(k-1)

, kRANSAC.

Output data: h(w, t, x).

Initialization :

Step 0. k:=0; Jmax:=-¤.

Repeat iterations:

k:= k+1;

Step 1. Take the random dissimilar pair (xi ,xj) in X.

Step 2. Get vector (xi,xj) as a vector of hyperplane direction: wk:=xj ï xi.

Step 3. Calculate the threshold tk minimizing J (6) by t with w=wk:

tk:=argmint J(X, h
(k-1)

, wk, t).

Step 4. If J(X, h
(k-1)

, wk, tk) > Jmax, then

 Jmax:= J(X, h
(k-1)

, wk, tk); w:= wk; t:= tk.

while k<kRANSAC. // stop if the given number of RANSAC iterations is achieved

BHF details: Learning elementary linear classifier
 via RANSAC algorithm

Projection determination:

¶ random selection of dissimilar pairs in a training set as a vector of hyperplane

direction.

Threshold determination:

¶ The idea of Boosted SSC ñThresholdRateò algorithm is implemented for direct

optimization of the global objective function:

*Figure from G. ShakhnarovichΣ ά[ŜŀǊƴƛƴƎ task-specific similarityΣέ нллр.

Å Sort projections of objects of training set onto the current projection direction w

Å For each t accumulate penalties for separated similar and non-separated dissimilar pairs

BHF details: Recursive coding and Trees of coders

Consider the tessellation of X by n-bit coder:

XB = {Xb, bÍ{0,1}
n
}, Xb = {xÍX: h(x)=b}, X = ÇbÍ{0,1} n X b.

Recursive coding is a dichotomy of training set with finding the optimized

elementary coder for each subset at each level of tessellation:

 1 bit 2 bits 3 bits 4 bitsé

Elementary recursive coder for k-th bit:

h
(k)

(x, h
(k-1)

) = h(w(h
(k-1)

(x)), t(h
(k-1)

(x)), x),

h
(k)

(x, h
(k-1)

) = Learn1BitHash(J, X, h
(k-1)

) =

= {Learn1ProjectionHash(J, X(h
(k-1)

,b), h
(k-1)

), bÍ{0,1}
(k-1)

}.

//set of 2
(k-1)

 thresholded projections formed by RANSAC

Tree of binary coders: recursive n-bit coder h
(n)

(x).

BHF details: Recursive coding and Trees of coders

Consider the tessellation of X by n-bit coder:

XB = {Xb, bÍ{0,1}
n
}, Xb = {xÍX: h(x)=b}, X = ÇbÍ{0,1} n X b.

Recursive coding is a dichotomy of training set with finding the optimized

elementary coder for each subset at each level of tessellation:

 1 bit 2 bits 3 bits 4 bitsé

Elementary recursive coder for k-th bit:

h
(k)

(x, h
(k-1)

) = h(w(h
(k-1)

(x)), t(h
(k-1)

(x)), x),

h
(k)

(x, h
(k-1)

) = Learn1BitHash(J, X, h
(k-1)

) =

= {Learn1ProjectionHash(J, X(h
(k-1)

,b), h
(k-1)

), bÍ{0,1}
(k-1)

}.

//set of 2
(k-1)

 thresholded projections formed by RANSAC

Tree of binary coders: recursive n-bit coder h
(n)

(x).

BHF details: Recursive coding and Trees of coders

