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MOTIVATION: real-time face identification 
•  Real-time means smallest templates and fastest search  
    binary templates with Hamming distance; 
•  State-of-the-art recognition rates  
    convolutional neural networks (CNN) with non-binary output 
    features compared by better metrics (L2, cosine, etc.). 

Various applications  different requirements to: 
 template size,  template generation speed, 
 template matching speed,   recognition rate. 

Our purpose: construct the family of face representations, which 
continuously varies from “compact & fast” to “large & powerful”… 

…with the same engine. 

 
Is it possible? 



MAIN IDEA: Convolutional Network with Hashing Forrest (CNHF) 

CNHF = CNN + Hashing Transform based on Hashing Forest (HF) 
 

 
 
 
 
 
 
 
 

 
 
 

(Depth of trees  Coded metrics  Coding objective) = Family of face 
representations based on the same CNN. 
 
*In case of 1-bit coding “trees” and Hamming distance CNHF provides the 
Hamming embedding. 
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RELATED WORK 

Related work topics: 

• CNN for face recognition 

• learning approach 

• face representation 

• matching metrics 

• Binary Hashing and Hamming Embedding 

• Convolutional Networks + Binary Hashing 

• Forest Hashing and Boosted Forest 
 
 
 
 
 



RELATED WORK: CNN for face recognition 

CNN learning approaches: 
 learn CNN for multi-class face identification with classes corresponding to persons  

Y. Taigman at al., “DeepFace: closing the gap to human-level performance in face verification,” 2014. 

E. Zhou at al., “Naive-deep face recognition: Touching the limit of LFW benchmark or not?” 2015. 

 learn the similarity metrics by training two identical CNNs (Siamese Architecture) 
H. Fan at al., “Learning deep face representation,” 2014. 

W. Wang at al., “Face recognition based on deep learning,” 2015. 

 combine these approaches 
Y. Sun at al., “Deep learning face representation by joint identification-verification,” 2014. 

Y. Sun at al., “DeepID3: Face recognition with very deep neural networks,” 2015. 

Face representation: 
 output of the (top) hidden layer: 



RELATED WORK: CNN for face recognition 

Matching metrics: 

 L1-distance/Hamming distance 
 

 

 L2-distance 
D. Chen at al., “Blessing of dimensionality: High-dimensional feature and its efficient compression for 

face verification,” 2013. 

W. Wang at al., “Face recognition based on deep learning,” 2015. 

 cosine similarity 
Y. Sun at al., “Deep learning face representation by joint identification-verification,” 2014. 

Y. Taigman at al., “DeepFace: closing the gap to human-level performance in face verification,” 2014. 

X. Wu, “Learning robust deep face representation,” 2015. 

 other 
 

? = 

H. Fan, M. Yang, Z. Cao, Y. Jiang and Q. Yin, “Learning Compact Face Representation: 

Packing a Face into an int32,” Proc. ACM Int. Conf. Multimedia, pp. 933-936, 2014. 

Our approach: 

• any given metrics (including Hamming distance and special metrics for forest 

of binary trees matching)   



RELATED WORK: CNN for face recognition 

CNN architectures: 

 multi-patch deep nets for different parts of face (state-of-the-art rates!) 
J. Liu at al., “Targeting ultimate accuracy: face recognition via deep embedding,” 2015. 

Y. Sun at al., “Deep learning face representation by joint identification-verification,” 2014. 

Y. Sun at al., “DeepID3: Face recognition with very deep neural networks,” 2015. 

 single nets (can be efficient enough with essentially lower computational cost) 
Z. Cao at al., “Face Recognition with Learning-based Descriptor” 2010. 

Omkar M. Parkhi at al., “Deep Face Recognition”, 2015 

 Max-Feature-Map (MFM) architecture 
X. Wu, “Learning robust deep face representation,” 2015. 

 

 

 

 

 

 

 

 

Our architecture: (based on the MFM architecture) 

 learning the basic single CNN with Max-Feature-Map (MFM) architecture 

 transforming the layers of learned CNN to the multiple convolution architecture 

for real-time implementation 
 

 



RELATED WORK: Binary Hashing and Hamming Embedding 

Binary hashing techniques: 
A. Gionis at al., “Similarity search in high dimensions via 

hashing,” 1999. 

Y. Gong at al., “Iterative quantization: A procrustean 

approach to learning binary codes for large-scale image 

retrieval,” 2012. 

K. He at al., “K-means Hashing: An affinity-preserving 

quantization method for learning binary compact codes,” 2013. 

W. Liu at al., “Supervised hashing with kernels,” 2012. 
 

Manifold hashing techniques: 
 Spectral Hashing 

Y. Weiss at al., “Spectral Hashing,” 2008. 
 Topology Preserving Hashing (TPH) 

L. Zhang at al., “Topology preserving hashing 

for similarity search,” 2013. 

 Locally Linear Hashing (LLH) 
G. Irie at al., “Locally linear hashing for 

extracting non-linear manifolds,” 2014. 

ITQ 

TPH 

LLH *Figures are taken 
 from cited papers! 



RELATED WORK: Binary Hashing and Hamming Embedding 

Closest approaches: 

 

 Restricted Boltzmann 

Machines (RBM) 
R. Salakhutdinov and G. Hinton,  

“Semantic hashing,” 2009. 

 Boosted Similarity Sensitive 

Coding (Boosted SSC) 
G. Shakhnarovich, “Learning task-specific 

similarity,” 2005. 

G. Shakhnarovich at al., “Fast pose estimation 

with parameter sensitive hashing,” 2003. 
 

 

Our approach: 

 

 Boosted Hashing Forest (generalization of Boosted SSC): 
 boosting the hashing forest in the manner of Boosted SSC; 

 induction of any given metrics in the coded feature space; 

 optimizing any given task-specific objective function. 
 

RBM 



RELATED WORK: Binary Hashing via Convolutional Networks 

Closest approach: 
 binary face coding via CNN with hashing layer (CNHL) 

 learning CNN and hashing layer together via back propagation technique 

H. Fan, M. Yang, Z. Cao, Y. Jiang and Q. Yin, “Learning Compact Face 

Representation: Packing a Face into an int32,” Proc. ACM Int. Conf. Multimedia, 

pp. 933-936, 2014. 

 

Great result: 32-bit binary face representation provides 91% verification on LFW! 

 

Problems: 
 results for larger templates are too far from state-of-the-art; 

 direct optimization of more complex face coding criterions is not available; 

 we cannot perform the learning if CNHF via back propagation. 

 

Our approach: 
 binary face coding via CNN with hashing transform 

 go back to the two-step learning procedure: 

 learn basic CNN first, 

 learn hashing transform second. 



RELATED WORK: Forest Hashing and Boosted Forest 

Previous Forest Hashing techniques (non-boosted): 
 random forest semantic hashing scheme with information-

theoretic code aggregation 
Q. Qiu at al., “Random Forests Can Hash,” 2014. 

 feature induction based on random forest for learning 

regression and multi-label classification 
C. Vens and F. Costa, “Random Forest Based Feature Induction”, 

    2011. 
 forest hashing with special order-sensitive Hamming distance 

G. Yu and J. Yuan, “Scalable forest hashing for fast similarity search”, 

    2014. 
 combination of kd-trees with hashing technique 

J. Springer at al., “Forest hashing: Expediting large scale image 

retrieval,” 2013. 
 

Previous Boosted Forest approach: 
 Boosted Random Forest (out of the binary hashing topic) 

Y. Mishina at al., “Boosted Random Forest,” 2015. 
 

Our approach: 
 Boosted Hashing Forest (generalization of Boosted SSC): 

 metric feature space induction via forest hashing; 

 hashing forest boosting in the manner of Boosted SSC; 

 optimizing the biometric-specific objective function. 

 



SUMMARY OF INTRODUCTION 
Contributions of this paper: 

(1) The family of real-time face representations based on multiple 

convolution CNN with hashing forest (CNHF); 

(2) New biometric-specific objective function for joint optimization of 

face verification and identification; 

(3) Boosted Hashing Forest (BHF) technique for optimized feature 

induction with generic form of coding objective, coded feature space and 

hashing function. 

 

Content of presentation reminder: 

 Architecture and learning of CNHF with 

multiple convolution layers; 

 Boosted Hashing Forest technique and 

its implementation for face coding; 

 Experimental results on LFW 

 Conclusion and discussion 

 



CNHF: basic single net with MFM architecture 

Original Max-Feature-Map (MFM) architecture: 

 Max-Feature-Map instead of ReLU activation function 

 4 convolutional layers 

 4 layers of pooling + MFM pooling 

 1 fully connected layer 

 1 sofmax layer 

 
X. Wu, “Learning robust deep face representation,” 2015. 



CNHF: basic CNN + Hashing Forest (HF) 

 

 

1 coding tree  1 coded feature 

Hashing forest  Objective feature space with Objective metrics 

(Depth of trees  Objective metrics  Objective function) = 

= Family of face representations* 
*1-bit coding “trees” + Hamming distance = CNHL for Hamming embedding 
 



CNHF: forming and learning 
Two-step CNHF learning scheme: 

 learn basic CNN for multi-class face identification; 

 learn hashing transform for joint face verification and identification. 

 

CNHF forming and learning (more details about CNN 

implementation): 

1. learn the source CNN for multi-class face identification with classes 

corresponding to persons via back-propagation; 

2. transform CNN to the multiple convolution architecture via 

substitution of each convolutional layer by the superposition of 

some (2-4) simpler convolutional layers (decreasing the number of 

multiplication operations); 

3. train again the transformed CNN for multi-class face identification 

via back-propagation; 

4. replace the output soft-max layer of transformed CNN by 

hashing forest and train the hashing forest. 



Steps 2&3: Multiple convolution CNN transformation 

Idea: Replace big convolutional filters by sequences of small filters and 1x1xN filters 
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Input and output dimensions are equal 
 
Transformed layer relearning by back propagation: 

Reference layer 

Multiconv layer 

Input 

Reference signal 

Euclidean loss 
Error 

Fast relearning (small layer sizes)! 
No need to relearn all network! 
 

Finally: fine tune the whole network after replacing all convolutional layers 



CNHF: multiple convolution architecture and performance 

Our CNHF architecture: 

 Max-Feature-Map instead of ReLU activation function 

 10 convolutional layers 

 4 layers of pooling + MFM pooling 

 1 fully connected layer 

 hashing forest 

 
CNHF performance: 

 40+ fps with CPU Core i7 (real-time without GPU) 

 120+ fps with GPU GeForce GTX 650 

5 times faster! 



FACE CODING: Boosted Hashing Forest (BHF) 

Boosted Hashing Forest (BHF): 

 algorithmic structure of Boosted SSC; 

 binary code structure of Forest Hashing; 

 support of any objective metrics and objective functions 
 

Original Boosted SSC 

 optimizes the performance of L1 distance in the 

embedding space 

 as a proxy for the pairwise similarity function, 

 which is conveyed by a set of examples of positive 

(similar) and negative (dissimilar) pairs. 

 



FACE CODING: Boosted Hashing Forest (BHF) 
Main parts of original Boosted SSC: 

 SSC algorithm takes pairs labeled by similarity and produces a binary 

embedding space.  

o The embedding is learned by independent collecting thresholded 

projections of the input data.  

o The threshold is selected by optimal splitting the projections of 

negative pairs and non-splitting the projections of positive pairs.  

 Boosted SSC algorithm collects the embedding dimensions greedily 

with adaptive weighting of samples and features like in AdaBoost. 

 BoostPro algorithm uses a soft thresholding for gradient-based 

learning of projections. 

 

*Figure from 
G. Shakhnarovich, “Learning task-specific similarity,” 2005. 



FACE CODING: Boosted Hashing Forest (BHF) 

Proposed BHF w.r.t. original Boosted SSC: 
 

 Original Boosted SSC Proposed BHF 

output features binary features binary coded non-binary features 

data coding structure binary hashing vector hashing forest of binary trees 

objective function pairwise similarity function any given objective function 

boosting algorithm iterative binary vector growing by 

adding thresholded projections  

iterative hashing forest growing 

with recursive growing of each tree 

by adding thresholded projections 

learning data 

projections 

gradient-based optimization objective-driven RANSAC search 

adaptive reweighting 

of training pairs 

AdaBoost-style reweighting directly based on the contribution of 

this pair to the objective function 

output metric space 

(matching metrics) 

weighted Hamming space any given metric space (including 

Hamming space, if required) 
 

Our BHF implementation for face coding: 
 new biometric-specific objective function with joint optimization of face 

verification and identification; 

 selection and processing of subvectors of the input feature vector; 

 creation of ensemble of output hash codes for overcoming the limitations of 

greedy learning. 



BHF details: Objective-driven Recurrent Coding 

Training set: X= {xiRm}i=1,…,N (N objects described by m-

dimensional feature space). 

Mapping X to the n-dimensional binary space (n-bit coder): 

 

h(n)(x): xRm  b{0,1}n   

 

Elementary coder (1-bit hashing function): 
 

h(x): xRm  b{0,1},h(n)(x) = (h(1)(x),…,h(n)(x)). 
 

Objective function to be minimized via learning: 
 

J(X,h(n))  min(h(n)). 
 

Formal statement 



BHF details: Objective-driven Recurrent Coding 

Greedy Objective-driven Recurrent Coding (Greedy ORC) algorithm 

sequentially forms the bits of coder in a recurrent manner (Algorithm 1) 

 

Algorithm 1: Greedy ORC 

Input data: X, J, nORC. 

Output data: 

   h(x): xR
m
  y{0,1}

nORC, h(x)H. 

Initialization: 

Step 0. k:=0; h
(k)

 := ( ). 

Repeat iterations: 

k:= k+1; 

Learn k-th elementary coder: 

h
(k)

(x, h
(k-1)

):= Learn1BitHash(J, X, h
(k-1)

); 

Add k-th elementary coder to the  

hashing function: 

h
(k)

(x) := (h
(k-1)

(x), h
(k)

(x, h
(k-1)

));  

// concatenation 

while k<nORC. // stop if the given size is got 

 

= 

1 



BHF details: Objective-driven Recurrent Coding 
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= 

+ 

10 
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BHF details: Objective-driven Recurrent Coding 

Greedy Objective-driven Recurrent Coding (Greedy ORC) algorithm 

sequentially forms the bits of coder in a recurrent manner (Algorithm 1) 

 

Algorithm 1: Greedy ORC 

Input data: X, J, nORC. 
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   h(x): xR
m
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Initialization: 
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+ 1011… 



BHF details: Learning elementary linear classifier 
 via RANSAC algorithm 

At the k-th step of coder growing we select the k-th elementary coder 
 

J(X,h
(k)

) = J(X,h
(k-1)

,h
(k)

)  min{h
(k)

  H}, 
 

Let H is a class of binary linear classifiers of the form 
 

h(w, t, x) = sgn(k=1,…,m wk xk + t),  

where w – vector of weights, t – threshold of hashing function, 

sgn(u) = {1, if u > 0; 0 - otherwise}. 

 

In this case objective function depends on w and t only: 

 

J(X,h
(k-1)

,h
(k)

) = J(X, h
(k-1)

, w, t)  min{wR
m
, tR}. 

 

We use RANSAC for finding the projection w and threshold t, which 

approximately minimizes the objective function. 

Formal statement 



BHF details: Learning elementary linear classifier 
 via RANSAC algorithm 

Projection determination: 

 Iterative random selection of dissimilar pairs in a training set as vectors 

of hyperplane direction and searching for corresponding optimal threshold; 

 taking the projection and threshold, which provide the best value of objective 

function. 
 

Algorithm 2: RANSAC Learn1ProjectionHash 

Input data: J, X, h
(k-1)

, kRANSAC. 

Output data: h(w, t, x). 

Initialization: 

Step 0. k:=0; Jmax:=-. 

Repeat iterations: 

k:= k+1; 

Step 1. Take the random dissimilar pair (xi ,xj) in X. 

Step 2. Get vector (xi,xj) as a vector of hyperplane direction: wk:=xj –  xi. 

Step 3. Calculate the threshold tk minimizing J (6) by t with w=wk: 

tk:=argmint J(X, h
(k-1)

, wk, t). 

Step 4. If J(X, h
(k-1)

, wk, tk) > Jmax, then 

              Jmax:= J(X, h
(k-1)

, wk, tk); w:= wk; t:= tk. 

while k<kRANSAC. // stop if the given number of RANSAC iterations is achieved 
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BHF details: Learning elementary linear classifier 
 via RANSAC algorithm 

Projection determination: 

 random selection of dissimilar pairs in a training set as a vector of hyperplane 

direction. 

Threshold determination: 

 The idea of Boosted SSC “ThresholdRate” algorithm is implemented for direct 

optimization of the global objective function: 

*Figure from G. Shakhnarovich, “Learning task-specific similarity,” 2005. 

• Sort projections of objects of training set onto the current projection direction w 

• For each t accumulate penalties for separated similar and non-separated dissimilar pairs  



BHF details: Recursive coding and Trees of coders 

Consider the tessellation of X by n-bit coder: 

 

XB = {Xb, b{0,1}
n
}, Xb = {xX: h(x)=b}, X = b{0,1}n X b. 

 

Recursive coding is a dichotomy of training set with finding the optimized 

elementary coder for each subset at each level of tessellation: 

 

 
                                               1 bit              2 bits             3 bits             4 bits… 
 

Elementary recursive coder for k-th bit: 
 

h
(k)

(x, h
(k-1)

) = h(w(h
(k-1)

(x)), t(h
(k-1)

(x)), x), 

h
(k)

(x, h
(k-1)

) = Learn1BitHash(J, X, h
(k-1)

) = 

= {Learn1ProjectionHash(J, X(h
(k-1)

,b), h
(k-1)

), b{0,1}
(k-1)

}. 

//set of 2
(k-1)

 thresholded projections formed by RANSAC 
 

Tree of binary coders: recursive n-bit coder h
(n)

(x). 
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n
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                                               1 bit              2 bits             3 bits             4 bits… 
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 thresholded projections formed by RANSAC 
 

Tree of binary coders: recursive n-bit coder h
(n)

(x). 

 



BHF details: Boosted Hashing Forest 
Boosted Hashing Forest (BHF) is formed via the boosting of hashing trees with 

optimization of joint objective function for all trees (Algorithm 3). 

 

Algorithm 3: Boosted Hashing Forest 

Input data: X, J, nORC, nBHF. 

Output data: h(x): xR
m
  y{0,1}

n
. 

Initialization: 

l:=0; h
[1,0]

:= ( ). 

Repeat iterations: 

l:= l+1; 
Form the objective as a function of l-th coding tree: 

J[l]
(X, h

[l,l]
) = J(X, h

[1,l-1]
, h

[l,l]
); 

Learn l-th coding tree: 

h
[l,l]

 := GreedyORC(J[l]
, X, nORC); 

Add l-th coding tree to the hashing forest: 

h
[1,l]

(x) := (h
[1,l-1]

(x), h
[l,l]

(x)); 

while l<nORC. // stop if the given size of coder is got 
 

 

BHF parameters and notation: 
nORC = p is a depth of coding tree; nBHF = n/p is a number of trees; 

h
[1,l]

 = (h
(1)

(x),…,h
(lp)

(x)), h
[1,l-1]

 = (h
(1)

(x),…,h
(lp-p)

(x)), h
[l,l]

 = (h
(lp-p+1)

(x),…,h
(lp)

(x)). 
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BHF details: Coding metric space 

Metric space (Y,  dY: YY R
+
) is n-bit binary coded, if 

 the each yY corresponds to unique b{0,1}
n
, 

 two decoding functions are given: 

 feature decoder fy(b): {0,1}
n
  Y  

 distance decoder fd(b1,b2): {0,1}
n
{0,1}

n
  R

+
,  

fd(b1,b2) = dY(fy(b1), fy(b2)). 

 

Metric space coding: 

 optimization of Distance-based objective function (DBOF) 
 

J(X,h)  min(h)  J(DY)  min(DY),    

 (7) 

DY ={dij = fd(h(xi), h(xj)), xi,xjX, h(x)H}i,j=1,…,N. 
 

Such objective function depends on the set of coded distances 

dij only. 



BHF implementation: Forest code matching 
via Sum of Search Index Distances 

We match tree codes via Search Index Distance (SID) – geodesic distance between binary 

codes as corresponding leaves on the coding tree: 
 

dT(y1,y2) = fdT(b1,b2) = 2  k=1,…,p (1 –  l=1,…,k (1 – |b1
(l)

 – b2
(l)

|)). 
 

Example. Let p=4, b1 = (1,0,1,1) and b2 = (1,0,0,1).  

Corresponding vertices on the coding tree are marked as blue (b1), red (b2) and purple (joint): 

                       root                           

                0                   1                    

           0        1         0         1              

        0   1   0   1    0   1     0   1           

      0 1 01 01 01 0 1 0 1 0 1 0  1        
The distance between blue and red leaves is 4 (2 levels up + 2 levels down): 
dT((1,0,1,1),(1,0,0,1)) = 2 ( 1 – (1 – 0) +  

                                            1 – (1 – 0)(1 – 0) + 

                                            1 – (1 – 0)(1 – 0) (1 – 1) + 

                                            1 – (1 – 0)(1 – 0) (1 – 1)(1 – 1) ) = 2 ( 0 + 0 + 1 + 1) = 4. 

End of example. 

Finally, we match forest codes via Sum of Search Index Distances (SSID) between trees: 

dij =  l=1,…,q fdT(h
[l,l]

(xi), h
[l,l]

(xj)). 
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BHF implementation: Objective function for face verification 

Similarity function s describes positive (authentic) and negative (imposter) pairs: 

 

        

 

Goal distance for k-bit binary code: 

 

 

          

Distance supervision objective function: 

 

JDist(DY) = i=1,…,N j=1,…,N vij (dij – gij)
2 min(DY = {dij}i,j=1,…,N), 

where vij – different weights for authentic and imposter pairs. 

 

Such objective function controls the verification performance (FAR-FRR). 



BHF implementation: Objective function for face 
identification 

Identification task requires controlling both distances and ordering of distances. 

Let for the query h(xk): 

d
1

k = maxl{dkl: skl = 1} – distance to the most far authentic; 

d
0

k = minl{dkl: skl = 0} – distance to the closest imposter 

 

Ordering error eij for a pair (xi,xj): 

 

 
          

 

(occurs if imposter is closer than authentic or authentic is more far than imposter) 

 

Distance order supervision objective function: 

 

JOrd(DY) = i=1,…,N j=1,…,N vij (dij – gij)
2
 eijmin(DY = {dij}i,j=1,…,N). 

 

penalizes the difference between dij and objective distance gij, 

but only in case that the ordering error eij occurs for this pair.  

 

Such objective function (12) controls the face identification characteristics (CMC). 

 



BHF implementation: Objective function for face  
verification and identification 

Distance and Distance order supervision objective function: 
 

J(DY) =  JDist(DY) + (1 – ) JOrd(DY) = 

      = i=1,…,N j=1,…,N vij (dij – gij)
2
 (eij + (1 – eij)) 

 min(DY = {dij}i,j=1,…,N),   

where [0,1] is a tuning parameter for balancing distance and 

distance order influence. 

 

Such objective function controls both the face verification and 

face identification characteristics. 

 



BHF implementation: semi-heuristic tricks 

Modification of goal distance: 

 

 

           

 

 

where m(k-1)
1 and (k-1)

1 are the mean value and standard 

deviation of authentic coded distances. 

Goal distance excludes the penalizing of imposter pairs, which 

could not be treated as authentic. 

For possible questions 



BHF implementation: semi-heuristic tricks 

We use the adaptive weighting of pairs at each k-th step of 

boosting: 
 

 

          

 

 

a(k) = i=1,…,N j=1,…,N sij (dij – gij)2 (eij + (1 – eij)), 

b(k) = i=1,…,N j=1,…,N (1 –sij) (dij – gij)2 (eij + (1 – eij)), 

 

where a(k) and b(k) provide the basic equal weight for all 

authentic and imposter pairs,  

and tuning parameter >1 gives the slightly larger weights to 

authentic pairs. 

For possible questions 



BHF implementation: semi-heuristic tricks 

Selection and processing of subvectors of the input feature vector: 

We split the input m-dimensional feature vector to the set of 

independently coded subvectors with fixed sizes from the set 

m = {mmin,…,mmax}. At the each step of boosting we get the subvector 

with corresponding BHF elementary coder providing the best contribution 

to the objective function. 

 

Creation of ensemble of independent hash codes: 

The output binary vector of size n consists of some independently grown 

parts of size nBHF<n. Such learning strategy prevents the premature 

saturation of objective function. 

 

For possible questions 



BHF implementation: tuning parameters 

Set of implemented BHF free parameters: 

 m = {mmin,…,mmax} – set of sizes for independently coded input 

subvectors; 

 nORC – depth of hashing trees; 

 nBHF – number of trees in the hashing forests; 

 kRANSAC – number of RANSAC iterations for each projection; 

  – objective function tuning parameter for balancing distance and 

distance order influence; 

   – tuning parameter, which gives slightly larger weights to authentic 

pairs; 

 

In general, coded metrics is a free parameter of our approach too, but in 

this paper we use the Sum of Search Index Distances (SSID) only. 



EXPERIMENTS 

Content of experimental part 

• Methodology: learning and testing CNHF; 

• Hamming embedding: CNHL vs. CNN; 

• Hamming embedding: BHF vs. Boosted SSC; 

• Proposed BHF w.r.t. original Boosted SSC; 

• CNHF performance w.r.t. depth of coding trees; 

• CNHL and CNHF vs. best methods on LFW. 



EXPERIMENTS: learning and testing CNHF 

 

CNN Learning 

 training dataset: CASIA-WebFace; 

 face alignment: 

 rotation of eye points to horizontal 

position with fixed eye-to-eye distance 

 crop to 128х128 size; 

 training framework: open source 

Caffe (http://caffe.berkeleyvision.org/); 

 training technique: training for multi-class 

face identification in the manner of 

Y. Sun at al., “Deep learning face representation from predicting 

10,000 classes,” 2014. 

X. Wu, “Learning robust deep face representation,” 2015. 

 



EXPERIMENTS: learning and testing CNHF 

Hashing forest learning 
 training dataset: 1000 authentic and 999000 imposter pairs of Faces in the Wild 

images (not from the testing LFW set); 

 formed family of CNHF coders: 

 Hamming embedding coders 20001 bit (250 byte), 2001 bit (25 byte) and 

321 bit (4 byte) of size; 

 Hashing forest coders – 2000 trees with 2-7 bits depth (0.5 – 1.75 Kbyte of 

size); 

 BHF parameter settings: 

 common settings for all CNHFs: 

o m = {8, 16, 32}, kRANSAC = 500,  = 0.25,  = 1.1; 

 individual settings for number of trees in HF 

(determined experimentally based on the analysis of the speed of identification 

rate growing w.r.t. number of code bits in the hashing process): 

o nBHF=200 for CNN+BHF-2001, 

o nBHF=500 for CNN+BHF-20001 

o nBHF=100 for CNHF-20007. 

 



EXPERIMENTS: learning and testing CNHF 

CNHF and CNN evaluation 

 testing dataset: Labeled Faces in the Wild (LFW); 

 face alignment: all the LFW images are processed and normalized to 

128х128 as in 

G.-B. Huang at al., “Learning to align from scratch,” 2012; 

 verification test: accuracy by the standard LFW unrestricted with 

outside labeled data protocol and ROC; 

 identification tests: CMC and rank-1 following the methodology  

L. Best-Rowden at al., “Unconstrained face recognition: Identifying a 

person of interest from a media collection,” 2014. 

 



EXPERIMENTS: Hamming embedding* 
                                      *CNHF degrades to CNHL 
 

Hamming embedding: CNHL vs. CNN 

 

 CNN face representation: vector of activations of 256 top hidden layer neurons; 

 СNN matching metrics: cosine similarity (CNN+CS) and L2-distance 

(CNN+L2); 

 CNHL face representations: 2000 and 200 bit-coders trained by BHF 

(CNN+BHF-20001 and CNN+BHF-2001); 

 СNHL matching metrics: Hamming distance. 

 
Table 1. Verification accuracy on LFW, code size and matching speed of CNN and CNHL 

Solution 
Accuracy 

on LFW 
Template 

 size 

Matches 

 in sec 

CNN+L2 0.947 8192 bit 2713222 

CNN+BHF-2001 0.963 200 bit 194986071 

CNN+CS 0.975 8192 bit 2787632 

CNN+BHF-20001 0.9814 2000 bit 27855153 

 
Our 200х1-bit face coder provides 40-times smaller template size and 70-times faster  
matching with only 1% decreasing of accuracy relative to basic CNN (96.3% on LFW)! 



EXPERIMENTS: Hamming embedding* 
                                       *CNHF degrades to CNHL 
 

Hamming embedding: CNHL vs. CNN 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Results: 

 Our solution CNN+BHF-20001 achieves 98.14% on LFW, which outperforms 

all other solutions based on this CNN. 

 Our 25-byte solution CNN+BHF-2001 outperforms CNN+L2. 

 Table 1 additionally demonstrates the gain in template size and matching speed. 
 



EXPERIMENTS: Hamming embedding*  

                                  *CNHF degrades to CNHL 

Hamming embedding: Proposed BHF vs. Boosted SSC 
 

Verification: ROC 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Results: 

 ROC graph for CNN+BHF is monotonously better than for CNN+BoostSSC; 
 



EXPERIMENTS: Hamming embedding* 
                                     *CNHF degrades to CNHL 

 

Hamming embedding: Proposed BHF vs. Boosted SSC 
 

Identification: CMC 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Results: 

 ROC graph for CNN+BHF is monotonously better than for CNN+BoostSSC; 

 CMC graphs (ranks 1-10) BHF outperforms BoostSSC (CNN+BHF-20001 

outperforms even CNN+CS). 
 



EXPERIMENTS: Hamming embedding* 
                                     *CNHF degrades to CNHL 

 

Hamming embedding: Proposed BHF vs. Boosted SSC 
 

Identification: Rank-1 

 
 

 

 

 

 

 

 

 

 

 

 

 

Results: 

 ROC graph for CNN+BHF is monotonously better than for CNN+BoostSSC; 

 CMC graphs (ranks 1-10) BHF outperforms BoostSSC (CNN+BHF-20001 

outperforms even CNN+CS). 

 BHF outperforms Boosted SSC in identification (rank-1) on LFW for all binary 

template sizes (outperforms even CNN+CS); 

 maximal rank-1 is 0.91 for BHF-20001 and 0.865 for BoostSSC-20001; 
 



EXPERIMENTS: Hashing Forest vs. Hashing Layer 
CNHF: 7-bit trees w.r.t. 1-bit Hamming embedding and CNN 
CNHF with N output features coded each by M-bit coding trees = CNHF-NM 
 

 
              

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ROC (a) and CMC (b) curves for CNN+CS, CNHF-20001 and CNHF-20007. 

Results: 
 CNHF-20007 achieves 98.59% on LFW. 

 CNHF-20007 is 93% rank-1 on LFW relative to 89.9% rank-1 for CNN+CS. 

 CNHF-20007 outperforms CNHF-20001 and basic CNN+CS both in 

verification (ROC) and in identification (CMC). 
 

 



SUMMARY of EXPERIMENTS: 
CNHF vs. CNHL, BHF vs. Bossted SSC, 

CNHL two-step learning vs. one-step learning 

Main conclusion: adding hashing forest on the top of CNN allows 
both generating the compact binary face representations and 
increasing the face verification and especially identification rates. 

1) For all characteristics (accuracy, ROC, rank-1, CMC): 

CNN+BHF-20007 > CNN+BHF-20001 >  CNN+CS  >  CNN+L2  

2) For all characteristics (accuracy, ROC, rank-1, CMC) and all N: 

CNN+BHF1 > CNN+BoostedSSC  

3) If accuracy > 96% on LFW (other characteristics are unknown) : 

CNN+BHF-200х1 > CNHL-1000х1 (H. Fan at al., 2014) 

(HL learned after CNN) is 5 times more compact than (HL+CNN learned together )   
 

 
 

Notation: CNHF with N output features coded each by M-bit coding trees = CNHF-NхM 



EXPERIMENTS: CNHF performance w.r.t. depth of trees 

ROC curves for CNHF with different depth of coding trees: 
 

 

Results: 

 performance grows with growing 

depth of trees; 

 forest with 7-bit coding trees is the 

best by ROC… 

…but 5-bit depth solution is very close. 

 

Supposed reason: 

 limited amount of training set for 

forest hashing. 

(too small number of authentic pairs in 

the each cell of space tessellation) 

 

 
        1 bit              2 bits             3 bits             4 bits… 

 

It’s a topic for further research! 
 

 



EXPERIMENTS: CNHL and CNHF vs. best methods on LFW 

 

Verification accuracy on LFW: 
 

Method Accuracy 

WebFace [25] 0.9613 

CNHL-2001 0.963±0.00494 

DeepFace-ensemble[21] 0.9730±0.0025 

DeepID[19] 0.9745± 0.0026 

MFM Net[24] 0.9777 

CNHL-20001 0.9814 

CNHF-20007 0.9859 

DeepID2[17] 0.9915 ± 0.0013 

DeepID3[18] 0.9953 ± 0.0010 

Baidu[11] 0.9977 ± 0.0006 
 

25 bytes! 

250 bytes 



EXPERIMENTS: CNHL and CNHF vs. best methods on LFW 

CNHF identification results: 

 Our CNHF-20007 result is 0.93 rank-1 on LFW (real-time single net 

with hashing forest). 

 Best reported* DeepID3 result is 0.96 rank-1 on LFW (essentially 

deeper and slower multi-patch CNN). 

*Baidu declares even better result (0.98 rank-1 on LFW), but they use the 

training set 1.2 million images of size w.r.t. 400 thousand images in our 

case. 

 

CNHL verification results: 

 Our CNHF-20001 outperforms DeepFace-ensemble [30], DeepID 

[27], WebFace [35] and MFM Net [34]. 

 DeepID2 [25], DeepID3 [26] and Baidu [14] multi-patch CNNs 

outperform our CNHF-20001 based on single net. 
 

 

 

 

*Google’s FaceNet is formally a single net too, but it is too far 

from real-time 

Conclusion: Our real-time CNHF-2000 solutions outperforms 
all single nets* and close enough to multi-patch nets. 



CONCLUSIONS 

1. We develop the family of CNN-based binary face representations 

for real-time face identification: 
 Our 20001-bit face coder provides the compact face coding (250 byte) with 

simultaneous increasing of verification (98.14%) and identification (91% rank-1) 

on LFW.  

 Our 2001-bit face coder provides the 40-time gain in template size and 70-time 

gain in a matching speed with 1% decreasing of verification accuracy relative to 

basic CNN (96.3% on LFW).  

 Our CNHF with 2000 output 7-bit coding trees (CNHF-20007) achieves 98.59% 

verification accuracy and 93% rank-1 on LFW (add 3% to rank-1 of basic CNN). 

 

2. We propose the multiple convolution deep network architecture for 

acceleration of source Max-Feature-Map (MFM) CNN architecture: 
 Our CNHF generates binary face templates at the rate of 40+ fps with 

CPU Core i7 

 Our CNHF generates binary face templates at the rate of 120+ fps with 

GPU GeForce GTX 650 



CONCLUSIONS 

3. We propose and implement the new binary hashing technique, which 

forms the output feature space with given metric properties via joint optimization of 

face verification and identification.  

 Our Boosted Hashing Forest (BHF) technique combines the algorithmic structure 

of Boosted SSC approach and the binary code structure of forest hashing. 

 Our experiments demonstrate that BHF essentially outperforms the original 

Boosted SSC in face identification test. 

 

Ideas and plans for the future: 

 try to achieve the better recognition rates via CNHF based on multi-patch CNN, 

which we can use for non-real-time applications.  

 evolve and apply the proposed BHF technique for different data coding and 

dimension reduction problems (supervised, semi-supervised and unsupervised). 

 investigate the influence of the output metric space properties in the process of 

hashing forest learning. 
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EXPERIMENTS: CNHL and CNHF vs. best methods on LFW 
 

CNHL: two-step vs. one-step learning 

 

 32-bit binary face representation: 

 Best one-step result – 91% verification on LFW 
H. Fan at al., “Learning Compact Face Representation: Packing a Face into 

an int32,” 2014. 

 Our two-step learned CNHF 321 provides 90% only. 

 

 96% accuracy on LFW: 

 Our two-step learned CNHF-2001 (200 bit) hash demonstrates 

96.3% on LFW; 

 Best one-step result requires 1000 bit for achieving the 96% 

verification on LFW (our CNHF-2001 solution improves this face 

packing result in 5 times). 

(H. Fan at al., 2014) 

For possible questions 


