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MOTIVATION: real-time face identification 
ω  Real-time means smallest templates and fastest search Ý 
    binary templates with Hamming distance; 
ω  State-of-the-art recognition rates Ý 
    convolutional neural networks (CNN) with non-binary output 
    features compared by better metrics (L2, cosine, etc.). 

Various applications Ý different requirements to: 
¶ template size, ¶ template generation speed, 
¶ template matching speed, ¶  recognition rate. 

Our purpose: construct the family of face representations, which 
continuously varies from άŎƻƳǇŀŎǘ ϧ Ŧŀǎǘέ ǘƻ άƭŀǊƎŜ ϧ ǇƻǿŜǊŦǳƭέΧ 

ΧǿƛǘƘ ǘƘŜ ǎŀƳŜ ŜƴƎƛƴŜΦ 

 
Is it possible? 



MAIN IDEA: Convolutional Network with Hashing Forrest (CNHF) 

CNHF = CNN + Hashing Transform based on Hashing Forest (HF) 
 

 
 
 
 
 
 
 
 

 
 
 

(Depth of trees ³ Coded metrics ³ Coding objective) = Family of face 
representations based on the same CNN. 
 
* In case of 1-ōƛǘ ŎƻŘƛƴƎ άǘǊŜŜǎέ ŀƴŘ IŀƳƳƛƴƎ ŘƛǎǘŀƴŎŜ /bIC ǇǊƻǾƛŘŜǎ ǘƘŜ 
Hamming embedding. 

CNN Top Hidden Layer 

Objective Feature 
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Coding Transform 

 



RELATED WORK 

Related work topics: 

Å CNN for face recognition 

Å learning approach 

Å face representation 

Å matching metrics 

Å Binary Hashing and Hamming Embedding 

Å Convolutional Networks + Binary Hashing 

Å Forest Hashing and Boosted Forest 
 
 
 
 
 



RELATED WORK: CNN for face recognition 

CNN learning approaches: 
¶ learn CNN for multi-class face identification with classes corresponding to persons  

Y. Taigman at al., ñDeepFace: closing the gap to human-level performance in face verification,ò 2014. 

E. Zhou at al., ñNaive-deep face recognition: Touching the limit of LFW benchmark or not?ò 2015. 

¶ learn the similarity metrics by training two identical CNNs (Siamese Architecture) 
H. Fan at al., ñLearning deep face representation,ò 2014. 

W. Wang at al., ñFace recognition based on deep learning,ò 2015. 

¶ combine these approaches 
Y. Sun at al., ñDeep learning face representation by joint identification-verification,ò 2014. 

Y. Sun at al., ñDeepID3: Face recognition with very deep neural networks,ò 2015. 

Face representation: 
¶ output of the (top) hidden layer: 



RELATED WORK: CNN for face recognition 

Matching metrics: 

¶ L1-distance/Hamming distance 
 

 

¶ L2-distance 
D. Chen at al., ñBlessing of dimensionality: High-dimensional feature and its efficient compression for 

face verification,ò 2013. 

W. Wang at al., ñFace recognition based on deep learning,ò 2015. 

¶ cosine similarity 
Y. Sun at al., ñDeep learning face representation by joint identification-verification,ò 2014. 

Y. Taigman at al., ñDeepFace: closing the gap to human-level performance in face verification,ò 2014. 

X. Wu, ñLearning robust deep face representation,ò 2015. 

¶ other 
 

? = 

H. Fan, M. Yang, Z. Cao, Y. Jiang and Q. Yin, ñLearning Compact Face Representation: 

Packing a Face into an int32,ò Proc. ACM Int. Conf. Multimedia, pp. 933-936, 2014. 

Our approach: 

Åany given metrics (including Hamming distance and special metrics for forest 

of binary trees matching)   



RELATED WORK: CNN for face recognition 

CNN architectures: 

¶ multi -patch deep nets for different parts of face (state-of-the-art rates!) 
J. Liu at al., ñTargeting ultimate accuracy: face recognition via deep embedding,ò 2015. 

Y. Sun at al., ñDeep learning face representation by joint identification-verification,ò 2014. 

Y. Sun at al., ñDeepID3: Face recognition with very deep neural networks,ò 2015. 

¶ single nets (can be efficient enough with essentially lower computational cost) 
Z. Cao at al., ñFace Recognition with Learning-based Descriptorò 2010. 

Omkar M. Parkhi at al., ñDeep Face Recognitionò, 2015 

¶ Max-Feature-Map (MFM) architecture 
X. Wu, ñLearning robust deep face representation,ò 2015. 

 

 

 

 

 

 

 

 

Our architecture: (based on the MFM architecture) 

¶ learning the basic single CNN with Max-Feature-Map (MFM ) architecture 

¶ transforming the layers of learned CNN to the multiple convolution architecture 

for real-time implementation 
 

 



RELATED WORK: Binary Hashing and Hamming Embedding 

Binary hashing techniques: 
A. Gionis at al., ñSimilarity search in high dimensions via 

hashing,ò 1999. 

Y. Gong at al., ñIterative quantization: A procrustean 

approach to learning binary codes for large-scale image 

retrieval,ò 2012. 

K. He at al., ñK-means Hashing: An affinity-preserving 

quantization method for learning binary compact codes,ò 2013. 

W. Liu at al., ñSupervised hashing with kernels,ò 2012. 
 

Manifold hashing techniques: 
¶ Spectral Hashing 

Y. Weiss at al., ñSpectral Hashing,ò 2008. 
¶ Topology Preserving Hashing (TPH) 

L. Zhang at al., ñTopology preserving hashing 

for similarity search,ò 2013. 

¶ Locally Linear Hashing (LLH) 
G. Irie  at al., ñLocally linear hashing for 

extracting non-linear manifolds,ò 2014. 

ITQ 

TPH 

LLH *Figures are taken 
 from cited papers! 



RELATED WORK: Binary Hashing and Hamming Embedding 

Closest approaches: 

 

¶ Restricted Boltzmann 

Machines (RBM) 
R. Salakhutdinov and G. Hinton,  

ñSemantic hashing,ò 2009. 

¶ Boosted Similarity Sensitive 

Coding (Boosted SSC) 
G. Shakhnarovich, ñLearning task-specific 

similarity,ò 2005. 

G. Shakhnarovich at al., ñFast pose estimation 

with parameter sensitive hashing,ò 2003. 
 

 

Our approach: 

 

¶ Boosted Hashing Forest (generalization of Boosted SSC): 
¶ boosting the hashing forest in the manner of Boosted SSC; 

¶ induction of any given metrics in the coded feature space; 

¶ optimizing any given task-specific objective function. 
 

RBM 



RELATED WORK: Binary Hashing via Convolutional Networks 

Closest approach: 
¶ binary face coding via CNN with hashing layer (CNHL ) 

¶ learning CNN and hashing layer together via back propagation technique 

H. Fan, M. Yang, Z. Cao, Y. Jiang and Q. Yin, ñLearning Compact Face 

Representation: Packing a Face into an int32,ò Proc. ACM Int. Conf. Multimedia, 

pp. 933-936, 2014. 

 

Great result: 32-bit binary face representation provides 91% verification on LFW! 

 

Problems: 
¶ results for larger templates are too far from state-of-the-art; 

¶ direct optimization of more complex face coding criterions is not available; 

¶ we cannot perform the learning if CNHF via back propagation. 

 

Our approach: 
¶ binary face coding via CNN with hashing transform 

¶ go back to the two-step learning procedure: 

¶ learn basic CNN first, 

¶ learn hashing transform second. 



RELATED WORK: Forest Hashing and Boosted Forest 

Previous Forest Hashing techniques (non-boosted): 
¶ random forest semantic hashing scheme with information-

theoretic code aggregation 
Q. Qiu at al., ñRandom Forests Can Hash,ò 2014. 

¶ feature induction based on random forest for learning 

regression and multi-label classification 
C. Vens and F. Costa, ñRandom Forest Based Feature Inductionò, 

    2011. 
¶ forest hashing with special order-sensitive Hamming distance 
G. Yu and J. Yuan, ñScalable forest hashing for fast similarity searchò, 

    2014. 
¶ combination of kd-trees with hashing technique 
J. Springer at al., ñForest hashing: Expediting large scale image 

retrieval,ò 2013. 
 

Previous Boosted Forest approach: 
¶ Boosted Random Forest (out of the binary hashing topic) 
Y. Mishina at al., ñBoosted Random Forest,ò 2015. 

 

Our approach: 
¶ Boosted Hashing Forest (generalization of Boosted SSC): 

¶ metric feature space induction via forest hashing; 

¶ hashing forest boosting in the manner of Boosted SSC; 

¶ optimizing the biometric-specific objective function. 

 



SUMMARY OF INTRODUCTION 
Contributions of this paper: 

(1) The family of real-time face representations based on multiple 

convolution CNN with hashing forest (CNHF); 

(2) New biometric-specific objective function for joint optimization of 

face verification and identification; 

(3) Boosted Hashing Forest (BHF) technique for optimized feature 

induction with generic form of coding objective, coded feature space and 

hashing function. 

 

Content of presentation reminder: 

¶ Architecture and learning of CNHF with 

multiple convolution layers; 

¶ Boosted Hashing Forest technique and 

its implementation for face coding; 

¶ Experimental results on LFW 

¶ Conclusion and discussion 

 



CNHF: basic single net with MFM architecture 

Original Max-Feature-Map (MFM ) architecture: 

¶ Max-Feature-Map instead of ReLU activation function 

¶ 4 convolutional layers 

¶ 4 layers of pooling + MFM pooling 

¶ 1 fully connected layer 

¶ 1 sofmax layer 

 
X. Wu, ñLearning robust deep face representation,ò 2015. 



CNHF: basic CNN + Hashing Forest (HF) 

 

 

1 coding tree ª 1 coded feature 

Hashing forest ª Objective feature space with Objective metrics 

(Depth of trees ³ Objective metrics ³ Objective function) = 

= Family of face representations*  
*1-bit coding ñtreesò + Hamming distance = CNHL for Hamming embedding 
 



CNHF: forming and learning 
Two-step CNHF learning scheme: 

¶ learn basic CNN for multi-class face identification; 

¶ learn hashing transform for joint face verification and identification. 

 

CNHF forming and learning (more details about CNN 

implementation): 

1. learn the source CNN for multi-class face identification with classes 

corresponding to persons via back-propagation; 

2. transform CNN to the multiple convolution architecture via 

substitution of each convolutional layer by the superposition of 

some (2-4) simpler convolutional layers (decreasing the number of 

multiplication operations); 

3. train again the transformed CNN for multi-class face identification 

via back-propagation; 

4. replace the output soft-max layer of transformed CNN by 

hashing forest and train the hashing forest. 



Steps 2&3: Multiple convolution CNN transformation 

Idea: Replace big convolutional filters by sequences of small filters and 1x1xN filters 

128 

5 

5 3 

3 

64 

3 

3 

64 

1 

1 

128 

Input and output dimensions are equal 
 
Transformed layer relearning by back propagation: 

Reference layer 

Multiconv layer 

Input 

Reference signal 

Euclidean loss 
Error 

Fast relearning (small layer sizes)! 
No need to relearn all network! 
 

Finally: fine tune the whole network after replacing all convolutional layers 



CNHF: multiple convolution architecture and performance 

Our CNHF architecture : 

¶ Max-Feature-Map instead of ReLU activation function 

¶ 10 convolutional layers 

¶ 4 layers of pooling + MFM pooling 

¶ 1 fully connected layer 

¶ hashing forest 

 
CNHF performance: 

¶ 40+ fps with CPU Core i7 (real-time without GPU) 

¶ 120+ fps with GPU GeForce GTX 650 

5 times faster! 



FACE CODING: Boosted Hashing Forest (BHF) 

Boosted Hashing Forest (BHF): 

¶ algorithmic structure of Boosted SSC; 

¶ binary code structure of Forest Hashing; 

¶ support of any objective metrics and objective functions 
 

Original Boosted SSC 

¶ optimizes the performance of L1 distance in the 

embedding space 

¶ as a proxy for the pairwise similarity function, 

¶ which is conveyed by a set of examples of positive 

(similar) and negative (dissimilar) pairs. 

 



FACE CODING: Boosted Hashing Forest (BHF) 
Main parts of original Boosted SSC: 

¶ SSC algorithm takes pairs labeled by similarity and produces a binary 

embedding space.  

o The embedding is learned by independent collecting thresholded 

projections of the input data.  

o The threshold is selected by optimal splitting the projections of 

negative pairs and non-splitting the projections of positive pairs.  

¶ Boosted SSC algorithm collects the embedding dimensions greedily 

with adaptive weighting of samples and features like in AdaBoost. 

¶ BoostPro algorithm uses a soft thresholding for gradient-based 

learning of projections. 

 

*Figure from 
G. ShakhnarovichΣ ά[ŜŀǊƴƛƴƎ task-specific similarityΣέ нллр. 



FACE CODING: Boosted Hashing Forest (BHF) 

Proposed BHF w.r.t. original Boosted SSC: 
 

 Original Boosted SSC Proposed BHF 

output features binary features binary coded non-binary features 

data coding structure binary hashing vector hashing forest of binary trees 

objective function pairwise similarity function any given objective function 

boosting algorithm iterative binary vector growing by 

adding thresholded projections  

iterative hashing forest growing 

with recursive growing of each tree 

by adding thresholded projections 

learning data 

projections 

gradient-based optimization objective-driven RANSAC search 

adaptive reweighting 

of training pairs  

AdaBoost-style reweighting directly based on the contribution of 

this pair to the objective function 

output metric space 

(matching metrics) 

weighted Hamming space any given metric space (including 

Hamming space, if required) 
 

Our BHF implementation for face coding: 
¶ new biometric-specific objective function with joint optimization of face 

verification and identification; 

¶ selection and processing of subvectors of the input feature vector; 

¶ creation of ensemble of output hash codes for overcoming the limitations of 

greedy learning. 



BHF details: Objective-driven Recurrent Coding 

Training set: X= {xiÍRm} i=1,é,N (N objects described by m-

dimensional feature space). 

Mapping X to the n-dimensional binary space (n-bit coder): 

 

h(n)(x): xÍRm ­ bÍ{0,1} n   

 

Elementary coder (1-bit hashing function): 
 

h(x): xÍRm ­ bÍ{0,1},h(n)(x) = (h(1)(x),é,h(n)(x)). 
 

Objective function to be minimized via learning: 
 

J(X,h(n)) ­ min(h(n)). 
 

Formal statement 



BHF details: Objective-driven Recurrent Coding 

Greedy Objective-driven Recurrent Coding (Greedy ORC) algorithm 

sequentially forms the bits of coder in a recurrent manner (Algorithm 1) 

 

Algorithm  1: Greedy ORC 

Input data: X, J, nORC. 

Output data: 

   h(x): xÍR
m
 ­ yÍ{0,1}

nORC, h(x)ÍH. 

Initialization : 

Step 0. k:=0; h
(k)

 := ( ). 

Repeat iterations: 

k:= k+1; 

Learn k-th elementary coder: 

h
(k)

(x, h
(k-1)

):= Learn1BitHash(J, X, h
(k-1)

); 

Add k-th elementary coder to the  

hashing function: 

h
(k)

(x) := (h
(k-1)

(x), h
(k)

(x, h
(k-1)

));  

// concatenation 

while k<nORC. // stop if the given size is got 

 

= 

1 
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= 

+ 
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BHF details: Learning elementary linear classifier 
 via RANSAC algorithm 

At the k-th step of coder growing we select the k-th elementary coder 
 

J(X,h
(k)

) = J(X,h
(k-1)

,h
(k)

) ­ min{ h
(k)

 Í H},  
 

Let H is a class of binary linear classifiers of the form 
 

h(w, t, x) = sgn(äk=1,é,m wk xk + t),  

where w ï vector of weights, t ï threshold of hashing function, 

sgn(u) = {1, if u > 0; 0 - otherwise}. 

 

In this case objective function depends on w and t only: 

 

J(X,h
(k-1)

,h
(k)

) = J(X, h
(k-1)

, w, t) ­ min{wÍR
m
, tÍR}.  

 

We use RANSAC for finding the projection w and threshold t, which 

approximately minimizes the objective function. 

Formal statement 



BHF details: Learning elementary linear classifier 
 via RANSAC algorithm 

Projection determination: 

¶ Iterative random selection of dissimilar pairs in a training set as vectors 

of hyperplane direction and searching for corresponding optimal threshold; 

¶ taking the projection and threshold, which provide the best value of objective 

function. 
 

Algorithm 2: RANSAC Learn1ProjectionHash 

Input data : J, X, h
(k-1)

, kRANSAC. 

Output data: h(w, t, x). 

Initialization : 

Step 0. k:=0; Jmax:=-¤. 

Repeat iterations: 

k:= k+1; 

Step 1. Take the random dissimilar pair (xi ,xj) in X. 

Step 2. Get vector (xi,xj) as a vector of hyperplane direction: wk:=xj ï  xi. 

Step 3. Calculate the threshold tk minimizing J (6) by t with w=wk: 

tk:=argmint J(X, h
(k-1)

, wk, t). 

Step 4. If J(X, h
(k-1)

, wk, tk) > Jmax, then 

              Jmax:= J(X, h
(k-1)

, wk, tk); w:= wk; t:= tk. 

while k<kRANSAC. // stop if the given number of RANSAC iterations is achieved 
 



BHF details: Learning elementary linear classifier 
 via RANSAC algorithm 

Projection determination: 

¶ Iterative random selection of dissimilar pairs in a training set as vectors 

of hyperplane direction and searching for corresponding optimal threshold; 

¶ taking the projection and threshold, which provide the best value of objective 

function. 
 

Algorithm 2: RANSAC Learn1ProjectionHash 

Input data : J, X, h
(k-1)

, kRANSAC. 

Output data: h(w, t, x). 

Initialization : 

Step 0. k:=0; Jmax:=-¤. 

Repeat iterations: 

k:= k+1; 

Step 1. Take the random dissimilar pair (xi ,xj) in X. 

Step 2. Get vector (xi,xj) as a vector of hyperplane direction: wk:=xj ï  xi. 

Step 3. Calculate the threshold tk minimizing J (6) by t with w=wk: 

tk:=argmint J(X, h
(k-1)

, wk, t). 

Step 4. If J(X, h
(k-1)

, wk, tk) > Jmax, then 

              Jmax:= J(X, h
(k-1)

, wk, tk); w:= wk; t:= tk. 

while k<kRANSAC. // stop if the given number of RANSAC iterations is achieved 
 



BHF details: Learning elementary linear classifier 
 via RANSAC algorithm 

Projection determination: 

¶ Iterative random selection of dissimilar pairs in a training set as vectors 

of hyperplane direction and searching for corresponding optimal threshold; 

¶ taking the projection and threshold, which provide the best value of objective 

function. 
 

Algorithm 2: RANSAC Learn1ProjectionHash 

Input data : J, X, h
(k-1)

, kRANSAC. 

Output data: h(w, t, x). 

Initialization : 

Step 0. k:=0; Jmax:=-¤. 

Repeat iterations: 

k:= k+1; 

Step 1. Take the random dissimilar pair (xi ,xj) in X. 

Step 2. Get vector (xi,xj) as a vector of hyperplane direction: wk:=xj ï  xi. 

Step 3. Calculate the threshold tk minimizing J (6) by t with w=wk: 

tk:=argmint J(X, h
(k-1)

, wk, t). 

Step 4. If J(X, h
(k-1)

, wk, tk) > Jmax, then 

              Jmax:= J(X, h
(k-1)

, wk, tk); w:= wk; t:= tk. 

while k<kRANSAC. // stop if the given number of RANSAC iterations is achieved 
 



BHF details: Learning elementary linear classifier 
 via RANSAC algorithm 

Projection determination: 

¶ random selection of dissimilar pairs in a training set as a vector of hyperplane 

direction. 

Threshold determination: 

¶ The idea of Boosted SSC ñThresholdRateò algorithm is implemented for direct 

optimization of the global objective function: 

*Figure from G. ShakhnarovichΣ ά[ŜŀǊƴƛƴƎ task-specific similarityΣέ нллр. 

Å Sort projections of objects of training set onto the current projection direction w 

Å For each t accumulate penalties for separated similar and non-separated dissimilar pairs  



BHF details: Recursive coding and Trees of coders 

Consider the tessellation of X by n-bit coder: 

 

XB = {Xb, bÍ{0,1}
n
}, Xb = {xÍX: h(x)=b}, X = ÇbÍ{0,1} n X b. 

 

Recursive coding is a dichotomy of training set with finding the optimized 

elementary coder for each subset at each level of tessellation: 

 

 
                                               1 bit              2 bits             3 bits             4 bitsé 
 

Elementary recursive coder for k-th bit: 
 

h
(k)

(x, h
(k-1)

) = h(w(h
(k-1)

(x)), t(h
(k-1)

(x)), x), 

h
(k)

(x, h
(k-1)

) = Learn1BitHash(J, X, h
(k-1)

) = 

= {Learn1ProjectionHash(J, X(h
(k-1)

,b), h
(k-1)

), bÍ{0,1}
(k-1)

}.  

//set of 2
(k-1)

 thresholded projections formed by RANSAC 
 

Tree of binary coders: recursive n-bit coder h
(n)

(x). 
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BHF details: Recursive coding and Trees of coders 


